基于多级Sigmoid神经网络的城市交通场景理解
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家863计划项目(2009AA11Z205);国家自然科学基金项目(50808025);国家教育部博士点基金项目(20090162110057)


Urban traffic scene understanding based on multi-level sigmoidal neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    交通场景的理解是交通监控、汽车安全辅助驾驶的基础。提出一种基于多级Sigmoid神经网络的城市交通环境理解方法。将5个3D结构特征与物体外观特征相结合表征城市交通环境,为了提高交通环境识别率,采用多级Sigmoid神经网络(MSNN)进行图像分割与识别。在公共测试视频数据库CamVid dataset进行实验,实验结果表明了该方法的有效性。

    Abstract:

    Urban traffic scene understanding is the basis of traffic monitoring and safety driving assistant system. A novel approach to understanding urban traffic scene captured from a car-mounted camera is proposed based on multi-level Sigmoidal neural network. Five 3D structure features were combined with the appearance features to represent the urban traffic environment and the recognition accuracy of traffic environment was improved by utilizing multi-level Sigmoidal neural network(MSNN) to segment and recognize the input images. Tested by the public CamVid dataset, the experimental results demonstrate the efficiency of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文

谭论正,夏利民,夏胜平.基于多级Sigmoid神经网络的城市交通场景理解[J].国防科技大学学报,2012,34(4):132-137.
TAN Lunzheng, XIA Limin, XIA Shengping. Urban traffic scene understanding based on multi-level sigmoidal neural network[J]. Journal of National University of Defense Technology,2012,34(4):132-137.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-09-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-09-12
  • 出版日期:
文章二维码