分布式并行地形分析中数据划分机制研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家863计划资助项目(2011AA120303);国家自然科学基金资助项目(41171298); 资源与环境信息系统国家重点实验室开放基金资助项目(2010KF0002SA);江苏省普通高校研究生科研创新计划项目(CXZZ12_0393)


Research on data partitioning of distributed parallel terrain analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据粒度是海量空间数据并行计算的重要问题之一。通过对不同性质的并行算法的对比分析,提出空间数据粒度模型,量化地反映并行地形分析中数据划分的规模,建立并行数据粒度评价模型。通过研究集群环境下不同算法的数据并行数据粒度问题,提出基于并行数据粒度评价模型的优化数据粒度调度算法。通过计算每一次并行计算的时间与数据粒度效率,从而实现对计算数据粒度动态更新以追求更高的加速比。经过实验验证,该算法较之传统算法,可提供更高的任务执行效率并具有更好的可移植性。

    Abstract:

    Data granularity is one of the most important issues of parallel computing based on large volume of spatial data. After a comparison with the different types of terrain analysis algorithms, a Geo-Data Granularity Model (GDGM in short) was proposed, which can be used for the quantitative description of data partition granularity in parallel computing process of massive spatial data. In this algorithm, according to the parallel evaluation method, the parallel data granularity was adaptively adjusted and finally an optimized data grain was obtained. The execution time of each parallel computing was recorded for the comparison of computing efficiency values from different data granularities. Furthermore, by means of the comparison, a dynamic algorithm was designed for the dynamic scheduling of different data granularity so that the optimal performance of specific algorithm was achieved. The preliminary experiments show that the algorithm has much better efficiency and portability than the traditional ones so far.

    参考文献
    相似文献
    引证文献
引用本文

宋效东,窦万峰,汤国安,等.分布式并行地形分析中数据划分机制研究[J].国防科技大学学报,2013,35(1):130-135.
SONG Xiaodong, DOU Wanfeng, TANG Guoan, et al. Research on data partitioning of distributed parallel terrain analysis[J]. Journal of National University of Defense Technology,2013,35(1):130-135.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-07-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-03-13
  • 出版日期:
文章二维码