基于逆向强化学习的舰载机甲板调度优化方案生成方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(71031007)


Inverse reinforcement learning based optimal schedule generation  approach for carrier aircraft on flight deck
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对计算机辅助指挥调度舰载机甲板作业的决策过程无法脱离人参与这一特点,引入基于逆向学习的强化学习方法,将指挥员或专家的演示作为学习对象,通过分析舰载机的甲板活动,建立舰载机甲板调度的马尔可夫决策模型(MDP)框架;经线性近似,采用逆向学习方法计算得到回报函数,从而能够通过强化学习方法得到智能优化策略,生成舰载机甲板调度方案。经仿真实验验证,本文所提方法能够较好地学习专家演示,结果符合调度方案优化需求,为形成辅助决策提供了基础。

    Abstract:

    Traditional aircraft scheduling on carrier flight deck relies heavily on human commander decisions. To improve the computer aided decision making, an inverse reinforcement learning method was proposed. Learning from the commander or expert's demonstration, a Markov decision process (MDP) based aircraft scheduling model by analyzing the aircraft operations on deck was proposed. Then, the optimal policy and schedule were generated by using the linear approximating and inverse reinforcement learning method. Simulation results show that our method can learn expert's demonstration well, satisfy the requirement of scheduling optimization, and facilitate the computer aided decision making.

    参考文献
    相似文献
    引证文献
引用本文

李耀宇,朱一凡,杨峰,等.基于逆向强化学习的舰载机甲板调度优化方案生成方法[J].国防科技大学学报,2013,35(4):171-175.
LI Yaoyu, ZHU Yifan, YANG Feng, et al. Inverse reinforcement learning based optimal schedule generation  approach for carrier aircraft on flight deck[J]. Journal of National University of Defense Technology,2013,35(4):171-175.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-10-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-08-22
  • 出版日期:
文章二维码