尺度自适应特征压缩跟踪
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家部委资助项目;国家863计划资助项目


The scale adaptive feature compressed tracking
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了对复杂环境中的目标进行长时间精确跟踪,提出一种尺度自适应特征压缩跟踪算法。通过结构约束性采样,获取不同位置不同尺度的扫描窗,离线计算不同尺度下的稀疏随机感知矩阵。在线跟踪时利用这些矩阵感知对应尺度的图像采样块,实现特征降维,提高运算速度。利用朴素贝叶斯分类器对降维特征进行判决,在线学习更新分类器参数,找出具有最高分类得分的采样块及其尺度作为新的跟踪结果,实现跟踪位置及尺度的自适应更新。实验结果表明,该算法能适应目标的基本姿态变化及尺度缩放,不依赖于目标初始跟踪区域尺度选取,跟踪结果具有较强的鲁棒性。

    Abstract:

    In order to track target accurately during a long term in complicated environment, an adaptive scale feature compressed tracking algorithm is presented. A number of scanning windows with different scales and positions were obtained by construction constraint sampling. To reduce the feature dimension and improve the processing speed, the sparse random perceived matrices of different scales which can be easily computed offline were adopted to extract the features of different sampling image patches with relevant scales online. The sampling patch having a maximal classification score was regarded as the new tracking result by classifying the compressing feature via a naive bayes classifier and updating the parameters through online learning, which can realize the adaptive update of tracking location and scales. Experimental results show that the algorithm can adapt itself to the basic attitude and scale change, which is robust and does not depend on the scale selection of the initial tracking area.

    参考文献
    相似文献
    引证文献
引用本文

张路平,韩建涛,李飚,等.尺度自适应特征压缩跟踪[J].国防科技大学学报,2013,35(5):146-151.
ZHANG Luping, HAN Jiantao, LI Biao, et al. The scale adaptive feature compressed tracking[J]. Journal of National University of Defense Technology,2013,35(5):146-151.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-03-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-11-06
  • 出版日期:
文章二维码