结合非负张量表示与扩展隐Dirichlet分配模型的图像标注
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61271439)


Extended latent Dirichlet allocation for image annotation of nonnegative tensor representation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于“语义鸿沟”的存在,自动图像标注是一项极具挑战性的工作。考虑到图像低层视觉特征与高层语义概念的差异,分别从图像表示与语义建模两个方面来实现自动图像标注。在图像表示方面,提出了一种正则化约束下的非负张量表示方法,用以提取符合人眼视觉直观理解的图像高阶结构特征。在语义建模方面,提出了一种三层贝叶斯模型——扩展隐Dirichlet分配。该模型利用隐变量来实现图像与标注词的关联,并通过一种基于变分推理的期望最大值方法来估计参数。实验结果表明,ELDA模型在大规模数据库NUS-WIDE上的标注结果相较于现有方法有了显著的提高。

    Abstract:

    Automatic image annotation is a challenge task due to the well-known semantic gap. Considering the difference between low-level visual features and high-level semantic concepts, the framework of automatic image annotation from the two aspects, image representation and semantic modeling, was constructed. For image representation, a new method of regularized nonnegative tensor representation (RNTP) was presented to abstract the detailed high-order tensor structures according to human’s intuitive recognition. A three-level hierarchical Bayesian model, extended latent Dirichlet allocation (ELDA), was developed for semantic modeling. In ELDA, each item of multiple image factors was modeled as a finite mixture over latent variables. Meanwhile, an efficient expectation-maximization algorithm based on variational inference was proposed for parameter estimation. Extensive experimental results are reported on the NUS-WIDE dataset to validate the effectiveness of our proposed solution to the automatic image annotation problem by comparing with other state-of-the-art methods.

    参考文献
    相似文献
    引证文献
引用本文

钱智明,钟平,王润生.结合非负张量表示与扩展隐Dirichlet分配模型的图像标注[J].国防科技大学学报,2014,36(6):152-157.
QIAN Zhiming, ZHONG Ping, WANG Runsheng. Extended latent Dirichlet allocation for image annotation of nonnegative tensor representation[J]. Journal of National University of Defense Technology,2014,36(6):152-157.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-03-31
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-22
  • 出版日期:
文章二维码