GPU上高光谱快速ICA降维并行算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61272146,41375113,41305101)


A parallel algorithm of FastICA dimensionality reduction for hyperspectral image on GPU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高光谱影像降维快速独立成分分析过程包含大规模矩阵运算和大量迭代计算。通过分析算法热点,设计协方差矩阵计算、白化处理、ICA迭代和IC变换等关键热点的图像处理单元映射方案,提出并实现一种G-FastICA并行算法,并基于GPU架构研究算法优化策略。实验结果显示:在处理高光谱影像降维时,CPU/GPU异构系统能获得比CPU更高效的性能,G-FastICA算法比串行最高可获得72倍加速比,比16核CPU并行处理快4~6.5倍。

    Abstract:

    Fast independent component analysis dimensionality reduction for hyperspectral image needs a large amount of matrix and iterative computation. By analyzing hotspots of the fast independent component analysis algorithm, such as covariance matrix calculation, white processing, ICA iteration and IC transformation, a GPU-oriented mapping scheme and the optimization strategy based on GPU-oriented algorithm on memory accessing and computationcommunication overlapping were proposed. The performance impact of thread-block size was also investigated. Experimental results show that better performance was obtained when dealing with the hyperspectral image dimensionality reduction problem: the GPU-oriented fast independent component analysis algorithm can reach a speedup of 72 times than the sequential code on CPU, and it runs 4~6.5 times faster than the case when using a 16-core CPU. 

    参考文献
    相似文献
    引证文献
引用本文

方民权,周海芳,张卫民,等. GPU上高光谱快速ICA降维并行算法[J].国防科技大学学报,2015,37(4):65-70.
FANG Minquan, ZHOU Haifang, ZHANG Weimin, et al. A parallel algorithm of FastICA dimensionality reduction for hyperspectral image on GPU[J]. Journal of National University of Defense Technology,2015,37(4):65-70.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-09-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-09-01
  • 出版日期:
文章二维码