无监督特征学习的人体活动识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61202117,91118008)


Unsupervised feature learning for human activity recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人的局限性可能会导致在提取特征中丢失重要信息,从而影响最终的识别效果问题,提出无监督特征学习技术的惯性传感器特征提取方法。其核心思想是使用无监督特征学习方法学习多个特征映射,再将所有特征映射拼接起来形成最终的特征计算方法。其优点是不会造成重要信息的损失,而且可以显著减少所使用的无监督特征学习模型的规模。为了验证所提出的特征提取方法在活动识别中的有效性,运用一个公开的活动识别数据集,使用三种常用无监督模型进行特征提取,并使用支持向量机进行活动识别。实验结果表明,特征提取方法取得了良好的效果,与其他方法相比具有一定的优势。

    Abstract:

    To solve the problems that human limitations may cause the loss of important information, thus affecting the classification results, a feature extraction method based on unsupervised feature learning techniques was proposed. Unsupervised feature learning method to learn multiple feature maps was used and concatenated together. This method can avoid the loss of important information, and also can significantly reduce the scale of unsupervised feature learning model used. To evaluate the proposed method, experiments on a public human activity recognition dataset were performed, using three commonly used unsupervised feature learning models, and finally using support vector machines to classify activities. The results show that the proposed feature extraction method achieves good results, and has certain advantages compared with other methods. 

    参考文献
    相似文献
    引证文献
引用本文

史殿习,李勇谋,丁博.无监督特征学习的人体活动识别[J].国防科技大学学报,2015,37(5):128-134.
SHI Dianxi, LI Yongmou, DING Bo. Unsupervised feature learning for human activity recognition[J]. Journal of National University of Defense Technology,2015,37(5):128-134.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-05-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-11-09
  • 出版日期:
文章二维码