信号稀疏分解理论在轴承故障检测中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51375484,51205401,51475463);国防科学技术大学博士生跨学科联合培养计划资助项目(kxk140301)


Application of signal sparse decomposition theory in bearing fault detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将信号稀疏分解理论引入到轴承故障检测问题中,提出新的轴承故障检测方法。通过字典学习的方式可有效实现轴承正常状态振动信号稀疏表示的超完备字典。利用该字典只适用于轴承正常状态信号稀疏分解的特点,将待分析信号在该字典上展开,通过比较信号稀疏表示误差与所设定阈值的关系来判断轴承对应的状态,从而实现轴承的故障检测。实验结果表明:当误差阈值设置合理时,该方法可有效地判断出轴承是否发生故障。

    Abstract:

    A new bearing fault detection method based on the signal sparse decomposition theory was developed. An over-complete dictionary on which the bearing vibration signals in normal state can be represented sparsely was trained by the dictionary learning method. According to the fact that this dictionary just can sparsely represent the signals in normal state, the bearing vibration signal in unknown state was decomposed on this dictionary. The bearing state was determined by comparing the representation error of the signal on the dictionary with the given error threshold, and then the bearing fault detection was achieved. Experimental tests validate the effectiveness of the proposed method in bearing fault detection when setting an appropriate error threshold.

    参考文献
    相似文献
    引证文献
引用本文

张新鹏,胡茑庆,程哲,等.信号稀疏分解理论在轴承故障检测中的应用[J].国防科技大学学报,2016,38(3):141-147.
ZHANG Xinpeng, HU Niaoqing, CHENG Zhe, et al. Application of signal sparse decomposition theory in bearing fault detection[J]. Journal of National University of Defense Technology,2016,38(3):141-147.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-04-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-07-07
  • 出版日期:
文章二维码