高超声速尖双锥流动高精度数值模拟
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国防科学技术大学科研计划资助项目(ZDYYJCYJ20140101)


Numerical simulation of hypersonic double cone flows with high-order methods
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以25°/55°尖双锥外形的高超声速低焓层流流动模拟为例,对高阶加权紧致非线性格式模拟激波/边界层干扰流动的能力进行验证和确认。空间离散采用二阶MUSCL和三阶、五阶加权紧致非线性格式,时间离散采用二阶精度双时间步方法,通量函数采用混合Roe-Rusanov,AUSMPW+,Van Leer等,对比了不同精度空间离散格式对时间、网格收敛特性和通量函数耗散特性的影响。数值模拟结果表明采用高精度空间离散格式能在较疏的网格上获得收敛解,并能消除结果对通量函数的敏感性,但收敛需要推进更久的计算时间。数值模拟结果与实验测量结果吻合良好,满足工程精度要求。

    Abstract:

    Hypersonic low enthalpy laminar flows of double cone with 25°/55° geometry were simulated by using high-order WCNS (weighted compact nonlinear schemes), and their capabilities to accurately predict laminar shock wave/boundary layer interaction were examined. The simulations were performed through adopting the second order MUSCL, the third-order and the fifth-order WCNS as spatial discretization schemes, employing the secondorder dual time-stepping approach for time integration and using different flux functions, such as hybrid Roe-Rusnov, AUSMPW+ and Van Leer, for comparison. The effects of high-order methods on time and grid convergence, as well as the dissipation characteristics of flux functions, were analyzed. The numerical simulation results indicate that the highorder methods can obtain well-resolved results on coarse grid and eliminate the sensitivity of flux functions. However, the high-order methods need longer computational time to reach convergence. The computed results show good agreement with the experimental data, and the computational accuracy may be characterized as reasonable for most engineering purposes.

    参考文献
    相似文献
    引证文献
引用本文

王东方,邓小刚,王光学,等.高超声速尖双锥流动高精度数值模拟[J].国防科技大学学报,2016,38(4):54-63.
WANG Dongfang, DENG Xiaogang, WANG Guangxue, et al. Numerical simulation of hypersonic double cone flows with high-order methods[J]. Journal of National University of Defense Technology,2016,38(4):54-63.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-04-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-09-13
  • 出版日期:
文章二维码