基于深度限制波尔兹曼机的辐射源信号识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61372167)


Radar emitter signal recognition based on deep restricted Boltzmann machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电子侦察中使用常规参数难以有效识别复杂体制雷达信号的问题,提出利用深度限制波尔兹曼机对辐射源识别的模型。模型由多个限制波尔兹曼机组成,通过逐层自底向上无监督学习获得初始参数,并用后向传播算法对整个模型进行有监督的参数微调,利用Softmax进行分类识别。通过仿真实验表明该模型能对辐射源进行有效的特征提取和分类识别,具有较高的识别精度和较强的鲁棒性。

    Abstract:

    To deal with the problem of radar emitter recognition caused by parameter complexity and agility of muti-function radars in electronic intelligence reconnaissance field, a new recognition model based on deep restricted Boltzmann machine was proposed. The model was composed of multiple restricted Boltzmann machine. A bottom-up hierarchical unsupervised learning was used to obtain the initial parameters, and then the traditional back propagation algorithm was conducted to fine-tune the network parameters, and the Softmax was used to classify the results at last. Simulation and comparison experiment shows that the proposed method has the ability of extracting the parameter features and recognizing the radar emitters, and it has strong robustness as well as high recognition rate.

    参考文献
    相似文献
    引证文献
引用本文

周东青,王玉冰,王星,等.基于深度限制波尔兹曼机的辐射源信号识别[J].国防科技大学学报,2016,38(6):136-141.
ZHOU Dongqing, WANG Yubing, WANG Xing, et al. Radar emitter signal recognition based on deep restricted Boltzmann machine[J]. Journal of National University of Defense Technology,2016,38(6):136-141.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-06-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-12-31
  • 出版日期:
文章二维码