用卷积神经网络分类最大稳定极值区域实现汉字区域定位
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家863计划资助项目(20157011012)


Scene Chinese text localization by convolutional neural network classifying maximum stable extremal regions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    获取对应笔画级连通区的最大稳定极值区域,实施形态学闭操作融合相距较近的最大稳定极值区域,融合后最大稳定极值区域对应的单个汉字区域;利用灰度共生矩阵描述最大稳定极值矩形区域的纹理信息,将其作为卷积神经网络的输入,卷积神经网络对最大稳定极值区域进行分类,过滤非汉字部分;利用最大稳定极值区域颜色直方图的Bhattacharyya距离等特征对最大稳定极值区域进行聚类,同一类最大稳定极值区域组合得到汉字文本候选区域;再次利用卷积神经网络对候选文本区域进行分类,过滤非文本部分,剩余的就是定位到的汉字文本区域。实验结果表明,该算法对于汉字区域定位具有良好的效果。

    Abstract:

    Firstly, the MSERs (maximum stable extremal regions) which corresponded to Chinese strokes was extracted. The morphological close operation was used to connect the nearby MSERs. The fused MSER corresponded to Chinese characters. Gray level co-occurrence matric was used to describe the textural characteristics of the fused MSER rectangle. They were the input of CNN (convolutional neural network). The MSER rectangles were classified by CNN in order to filter none Chinese character rectangle. Then, Chinese text candidates were constructed by clustering MSER rectangles based on the features such as the color histogram Bhattacharyya distance of MSER rectangles. CNN was reused to classify Chinese text candidates to filter none Chinese text clusters. Finally, the rectangle of the remaining clusters was the Chinese text regions of natural scene image. Experiment shows that the proposed algorithm is desirable in localizing the Chinese text in natural scene images.

    参考文献
    相似文献
    引证文献
引用本文

张鹏伟,张伟伟.用卷积神经网络分类最大稳定极值区域实现汉字区域定位[J].国防科技大学学报,2017,39(3):91-96.
ZHANG Pengwei, ZHANG Weiwei. Scene Chinese text localization by convolutional neural network classifying maximum stable extremal regions[J]. Journal of National University of Defense Technology,2017,39(3):91-96.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-09
  • 出版日期:
文章二维码