基于鲁棒高阶容积滤波的无人机相对导航状态估计方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61304236)


Unmanned aerial vehicle relative navigation method based on robust high degree cubature filtering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于无人机相对导航系统具有非线性强、噪声非高斯的特点,传统的基于卡尔曼滤波算法设计的相对导航滤波器存在估计失准甚至发散的问题。考虑到高阶容积卡尔曼滤波和最大熵滤波算法分别在解决非线性问题和非高斯问题时的优势,利用最大熵滤波的量测更新方法对高阶容积卡尔曼滤波的测量更新方程进行了改进,将传统的量测更新问题转换成了线性衰退的求解问题,避免了对测量噪声进行高斯假设,同时解决了系统非线性和量测噪声非高斯的问题。进行了相应的数学仿真,仿真结果表明:所提算法的估计精度超过了高阶容积卡尔曼滤波和最大熵滤波算法的,验证了算法的有效性。

    Abstract:

    Due to the strong-nonlinearity and non-Gaussianity of the UAV (unmanned aerial vehicle) relative navigation system, the accuracy of the traditional relative navigation filter, which is designed based on the Kalman filtering algorithm, decreases or even diverge. In view of the advantages of HCKF (high degree cubature Kalman filter) and MCKF (maximum correntropy Kalman filter) in coping with nonlinear problems and non-Gaussian problems, respectively, the measurement update equation was modified by the measurement update method of MCKF, and the traditional measurement update problem was recast as a linear regression problem. In addition, the Gaussian assumption of the measurement noise was avoided, the system nonlinearity and measurement noise non-Gaussianity were solved at the same time. The simulation was conducted, and the simulation results indicated that RHCF is superior to HCKF and MCKF. Hence, the effectiveness of the proposed algorithm is verified.

    参考文献
    相似文献
    引证文献
引用本文

金红新,杨涛,王小刚,等.基于鲁棒高阶容积滤波的无人机相对导航状态估计方法[J].国防科技大学学报,2017,39(4):139-143.
JIN Hongxin, YANG Tao, WANG Xiaogang, et al. Unmanned aerial vehicle relative navigation method based on robust high degree cubature filtering[J]. Journal of National University of Defense Technology,2017,39(4):139-143.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-09-12
  • 出版日期:
文章二维码