结合层次法与主成分分析特征变换的宫颈细胞识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61170287,61232016,61303189,61672528)


Cervical cell recognition based on hierarchical method and principal component analysis feature transformation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对宫颈细胞进行多分类可以自动识别出不同状态的细胞,进而为宫颈癌诊断提供科学依据。在用6种多分类算法进行实验后,选取支持向量机作为基分类器,先用一对一策略训练6个分类器进行3分类,然后再训练1个2分类器,这种二层4分类方法提高了识别准确率。考虑不同层特征模式的差异性,在保证识别性能的同时,每层分类前先采用主成分分析法将原始154维特征变换到低维空间,去除冗余特征,加快识别速度。实验证明,所提层次主成分分析法在宫颈细胞分类中相比6种传统多分类方法有更高的识别准确率,可达90%以上;识别速度也较普通层次法提升了21.31%。

    Abstract:

    In order to recognize multi-class cervical cells automatically, a hierarchical method with PCA (principal component analysis) feature transformation was proposed and this cell recognition could provide the evidence for cervical cancer diagnosis. The cervical cell recognition was treated as a 4-class classification problem. There were two levels in this hierarchical method. First, one-versus-one strategy was used to train 6 SVM (support vector machine) classifiers to do a 3-class classification. Second, abnormal cells in one type of 3 categories were classified by a 2-class SVM. To optimize the feature combination and reduce the running time, a feature transformation method named PCA was adopted to transform the original feature vector into lowdimension feature space. The experiments show that the proposed hierarchical PCA recognition method is faster than the common hierarchical method at a ratio of 21.31%, and can distinguish 4 cervical cell categories better than 6 other traditional methods and achieve above 90% accuracy.

    参考文献
    相似文献
    引证文献
引用本文

赵理莉,孙燎原,殷建平,等.结合层次法与主成分分析特征变换的宫颈细胞识别[J].国防科技大学学报,2017,39(6):45-50.
ZHAO Lili, SUN Liaoyuan, YIN Jianping, et al. Cervical cell recognition based on hierarchical method and principal component analysis feature transformation[J]. Journal of National University of Defense Technology,2017,39(6):45-50.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-16
  • 出版日期:
文章二维码