纹理影像特征选择及K-means聚类优化方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科技支撑计划资助项目(2014BAL05B07);国家自然科学基金资助项目(61301278);长江大学青年基金资助项目(2016cqn04)


Texture image feature selection and optimization by using K-means clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Gabor变换和K-means算法是最为常用的纹理分析方法。然而,采用Gabor变换得到的纹理特征向量具有较高的维数,影响算法的运行效率;K-means算法也易受初始类中心的影响而导致分类精度下降。因此,通过Relief算法对采用Gabor变换所提取的纹理特征进行选择,得到合适的纹理特征子集。进一步采用差分进化算法,对K-means算法的聚类中心进行优化从而提高纹理识别精度和效率。实验结果表明:提出的方法所需用到的纹理特征向量的维数相对于原始特征集有大幅降低,较之基本的K-means算法,纹理识别的精度也有较明显的提高。

    Abstract:

    Gabor transform and K-means algorithm are two commonly used texture analysis methods. However, the texture feature vector has a high dimension by using Gabor transform, which will influence the operating efficiency. Meanwhile, K-means algorithm is affected by the initial clustering centers, and it may lead to the decrease of classification accuracy. Although, some optimization algorithms like genetic algorithm and particle swarm optimization algorithm could improve the performance of K-means algorithm to some extent, the optimization effect is difficult to guarantee as the increase of dimension. Hence, the Relief algorithm was applied to make a feature selection for Gabor texture feature, and to obtain a suitable texture feature subset. Furthermore, a differential evolution algorithm was used to optimize the clustering center of K-means algorithm, and enhance the accuracy and efficiency of texture recognition. Experimental results demonstrate that the dimension of texture feature vector by using the proposed method is obviously lower than that by using the original feature set, and the recognition accuracy is also apparently improved than the basic K-means algorithm.

    参考文献
    相似文献
    引证文献
引用本文

王明威,万幼川,高贤君,等.纹理影像特征选择及K-means聚类优化方法[J].国防科技大学学报,2017,39(6):152-159.
WANG Mingwei, WAN Youchuan, GAO Xianjun, et al. Texture image feature selection and optimization by using K-means clustering[J]. Journal of National University of Defense Technology,2017,39(6):152-159.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-16
  • 出版日期:
文章二维码