星载光学遥感成像系统复杂性分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61405251,61471369);国防科技大学基金资助项目(JC14-02-02)


Complexity analysis of space borne optical remote sensing system
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为研究星载光学遥感成像系统的复杂性,由复杂系统的基本特征与系统研究的基本原则出发,通过对成像全链路流程的分析,确定光学遥感成像系统的复杂性来源及其表现形式。建立星载光学成像的数学模型,以系统重要参数——调制传递函数为基点,通过正过程建模分析和逆过程测量计算相结合的方式,分析了系统复杂性研究的基本原则,即还原论与整体论相结合、定性与定量相结合的过程。由正、逆过程的对比分析,一方面阐述了系统性能与各个环节参数之间的关系,另一方面又由正则化盲反卷积的方式得到图像中真实的调制传递函数。二者相辅相成,既能通过补偿系统复杂性因素影响提升系统性能,又能进一步指导系统优化设计。

    Abstract:

    In order to analyze the complexity of space borne optical remote sensing system and the source of complexity and its forms of optical remote sensing system were determined by analyzing the whole imaging chain, and the mathematical model of this process was built starting with the basic characteristics and rules of complex system. Based on the important parameter, namely MTF (modulation transfer function), the fundamental research pathway of complex system was analyzed by combining mathematical modeling and computing, namely combing principle reductionism with principle holism and combing qualitative analysis with quantitative analysis. Through the contrasting of the mathematical model and the computing result, on the one hand, the relationship between system performance and these key parameters were figured out; on the other hand, the true MTF of the system was obtained by using regularization blind deconvolution method. These analyses can make great contribution to not only the image quality but also the optimization of remote sensing system.

    参考文献
    相似文献
    引证文献
引用本文

余奇,王泽龙,谭欣桐,等.星载光学遥感成像系统复杂性分析[J].国防科技大学学报,2017,39(6):187-192.
YU Qi, WANG Zelong, TAN Xintong, et al. Complexity analysis of space borne optical remote sensing system[J]. Journal of National University of Defense Technology,2017,39(6):187-192.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-16
  • 出版日期:
文章二维码