结合全局与局部信息的主动轮廓分割模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(41671452);中央高校基本科研业务费专项资金资助项目(2042016kf012);湖北省科技支撑计划资助项目(2015BCE080)


An active contour segmentation model combining global and local region-based information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的基于区域的主动轮廓模型在分割灰度不均匀图像和噪声图像存在效果不佳的问题,提出结合全局项与局部项的主动轮廓分割模型。全局项由CV(Chan-Vese)模型的保真项构成,局部项的构建考虑局部区域信息的同时引入反映图像灰度特性的局部熵信息。依据图像灰度的特点,选择合理的全局项和局部项参数,并加入正则项保证曲线在演化过程中保持平滑,保障分割结果的可靠性。通过变分水平集方法最小化能量泛函,依据梯度下降流迭代更新水平集,完成曲线演化。采用模拟图像和实际图像进行实验分析,结果表明,所提出的结合全局项和局部项的主动轮廓模型可以高效地分割噪声严重以及灰度分布不均匀的图像。

    Abstract:

    Aimed at the problem of the traditional region-based active contour model, which was difficult to segment the noisy images and intensity inhomogeneous images, an active contour model, including global term, local term and regularization term, was proposed. Global term was derived from the data fidelity items of ChanVese model. Meanwhile, the construction of local term took the local intensity information into account and the image local entropy that reflected the grey characteristics was introduced. According to the characteristics of different images, the reasonable parameters of global item and local item were selected. The regularization term was added to ensure the smoothness of curve evolution and to guarantee the reliability of segmentation. A variable level set was used to minimize the energy function to get the gradient descent flow. Experimental results of synthetic images and real images demonstrate that the proposed approach is efficient in segmenting the noisy images and inhomogeneity images.

    参考文献
    相似文献
    引证文献
引用本文

赵丽科,郑顺义,魏海涛,等.结合全局与局部信息的主动轮廓分割模型[J].国防科技大学学报,2018,40(1):99-106.
ZHAO Like, ZHENG Shunyi, WEI Haitao, et al. An active contour segmentation model combining global and local region-based information[J]. Journal of National University of Defense Technology,2018,40(1):99-106.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-11-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-03-23
  • 出版日期:
文章二维码