关系抽取中远监督错误标注消除
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61472436,61532001,61303190)


Reducing wrong labels in distant supervision for relation extraction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前远监督方法被广泛应用于关系抽取任务。然而,远监督方法中存在大量错误标注现象,给远监督方法的学习效果带来了很大的影响。提出利用语义Jaccard度量关系短语与依存词间语义相似性的错误标注消除方法。消除错误标注后的训练数据用于训练模型,完成关系抽取。实验结果表明:该方法可以有效消除错误标注,提高关系抽取的性能。

    Abstract:

    Distant supervision has been widely used for relation extraction recently. In the distant supervision, many labels may to wrongly marked, which exerts a bad impact on relation extraction. A method to reduce wrong labels was introduced by using the semantic Jaccard to measure semantic similarity between the relation phrases and the dependency terms. The training data after reducing wrong labels was used to train the relation extractors. The experimental results show that the proposed method can effectively reduce wrong labels and improve the relation extraction performance compared with the state-of-art methods.

    参考文献
    相似文献
    引证文献
引用本文

汝承森,唐晋韬,谢松县,等.关系抽取中远监督错误标注消除. Reducing wrong labels in distant supervision for relation extraction[J].国防科技大学学报,2018,40(3):148-152.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-11-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-07-11
  • 出版日期:
文章二维码