入射频率对高功率微波与等离子体相互作用的影响分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点基础研究发展计划资助项目(2015AA8016029A)


Effect of the incident frequency on the interactions between high power microwave and plasma
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过建立等离子体中的波动方程、电子传递方程和重物质传递方程,研究了等离子体对高功率微波传输特性的影响。研究了高功率微波与等离子体相互作用中产生的电子密度和透射电场的变化过程,并重点分析了变化过程中入射波频率产生的影响。研究结果表明,在相互作用过程中,等离子体中的电子密度和透射电场在一定条件下会发生阶跃变化,即等离子体区域平均电子数密度会在极短的时间内由1×109 m-3增加到1×1019m-3,平均电场强度也会由初始场强跃变为零,并且这种变化的产生存在一定的入射阈值场强和最低产生时间。当入射电磁波的频率不同时,产生阶跃变化所需的场强阈值和最低产生时间就会变得不同,高功率微波与等离子体相互作用中存在一定的色散效应。在所考虑的范围内,阈值场强随入射波频率线性增长,而最低产生时间随电磁波频率呈非线性增长变化。

    Abstract:

    The interaction between the plasma and the high power microwave was studied with the wave equation, the electron transport equation and the heavy species transport equation. The change process of the electron density and the electric field in the plasma was calculated, and the dispersion effect of the incident frequency in the interactions was especially analyzed. Result shows that the electron density and the electric field intensity will change suddenly due to the interactions of HPM(high power microwave) and plasma, in which the mean electron density will increase from 1×109 m-3 to 1×1019m-3, and the average electric field strength will decrease from the original value to zero abruptly in a very short time. Moreover, the threshold field strength and minimum generation time in the changing process are considered to study the dispersion effects. As a result, the threshold strength and generation time are vary with the frequency. In addition, it can be admitted that the threshold strength increases linearly and the generation time grows nonlinearly with the frequency of incident wave with further research.

    参考文献
    相似文献
    引证文献
引用本文

李志刚,程立,马志伟,等.入射频率对高功率微波与等离子体相互作用的影响分析[J].国防科技大学学报,2018,40(4):47-52.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-10-31
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-09-17
  • 出版日期: 2018-08-28
文章二维码