网络异构信息的张量分解聚类方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61401482, 61401483)


Tensor decomposition based clustering method for heterogeneous information in networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出基于张量分解的聚类算法,能够同时处理网络中多类型、多语义关系的异构信息。网络信息体系中的各种异构信息被建模为一个多维张量,异构信息之间丰富的语义关系建模为张量中的元素。提出有效的张量分解方法,将不同类型的信息对象一次性划分到不同的簇中。在人工合成的数据集和真实数据集上的实验结果表明:该聚类方法可以很好地处理网络信息体系中的异构信息聚类问题,并且性能优于现有的聚类方法。

    Abstract:

    A tensor decomposition based clustering method was proposed for heterogeneous information in networks. This clustering method can cluster multiple types of objects and rich semantic relationships simultaneously. The multi-types of information objects in networks were modeled as a high-dimensional tensor, and the rich semantic relationships among different types of objects were modeled as elements in the tensor. Based on an effective tensor decomposition method, the multi-types of objects were partitioned into different clusters simultaneously. The experimental results on both synthetic datasets and real-world dataset show that the proposed clustering method can deal with the heterogeneous information in networks well, and can outperform the state-of-the-art clustering algorithms.

    参考文献
    相似文献
    引证文献
引用本文

吴继冰,黄宏斌,邓苏.网络异构信息的张量分解聚类方法[J].国防科技大学学报,2018,40(5):146-152,170.
WU Jibing, HUANG Hongbin, DENG Su. Tensor decomposition based clustering method for heterogeneous information in networks[J]. Journal of National University of Defense Technology,2018,40(5):146-152,170.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-21
  • 出版日期: 2018-10-28
文章二维码