采用PageRank和节点聚类系数的标签传播重叠社区发现算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家863计划资助项目(2015AA043701)


Overlapping community detection algorithm by label propagation using PageRank and node clustering coefficients
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于标签传播的社区发现算法可以检测出复杂网络的重叠社区结构,因此提出了一种基于PageRank和节点聚类系数的重叠社区发现算法。该算法使用PageRank算法对节点的影响力进行排序,可以稳定社区发现结果,节点的聚类系数是一个与节点相关的值,使用节点聚类系数修改算法的参数并限制每个节点拥有最多标签的数量值,可以提高社区挖掘的质量。在人工网络和真实世界的网络上测试,实验验证了该算法能够有效地检测出重叠社区,并具有可接受的时间效率和算法复杂度。

    Abstract:

    Considering the fact that the community detection algorithm based on label propagation can detect overlapping community structures of complex networks, an overlapping community detection algorithm COPRAPC (community overlap propagation algorithm based on PageRank and clustering coefficient) was proposed. The algorithm used PageRank algorithm to rank the influence of nodes, which can stabilize the community finding results. The parameter of node clustering coefficient was a noderelated parameter, which can be used to modify the parameters of the algorithm and limit the maximum number of labels each node, so as to improve the quality of community mining. Experiments on artificial networks and real-world networks show that the algorithm can effectively detect overlapping communities, and the algorithm has acceptable time efficiency and algorithm complexity.

    参考文献
    相似文献
    引证文献
引用本文

马健,刘峰,李红辉,等.采用PageRank和节点聚类系数的标签传播重叠社区发现算法[J].国防科技大学学报,2019,41(1):183-190.
MA Jian, LIU Feng, LI Honghui, et al. Overlapping community detection algorithm by label propagation using PageRank and node clustering coefficients[J]. Journal of National University of Defense Technology,2019,41(1):183-190.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-02-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-03-15
  • 出版日期: 2019-02-28
文章二维码