超声速气流中液体横向射流一次破碎过程
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(11472303,11402298)


Primary breakup process of liquid jet in supersonic crossflow
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    发展显微成像方法获得空间分辨率为1.57 μm/pixel的近场射流瞬态图像,分析超声速气流中液体横向射流表面波演化规律。采用流体体积法获得射流的三维形态及近场流场特征,研究近场流场结构及气液作用。射流的一次破碎过程主要有表面破碎和液柱破碎。其中表面破碎由气液剪切引起的K-H不稳定主导,液柱破碎由气液加速引起的R-T不稳定主导;射流柱表面局部压力的脉动是诱导产生射流迎风面表面波并促使其沿射流方向发展的主要原因;射流柱与超声速气流作用形成背风面回流,近壁面液雾主要由表面破碎及背风面回流输运的液滴组成。

    Abstract:

    The transient image of the liquid jet in supersonic crossflow was obtained by microphotography method and the spatial resolution was 1.57 μm/pixel. The evolution of the surface wave was phenomenologically analyzed. The 3D flow field and liquid column structure were numerically investigated through volume of fluid method and the gasliquid interaction was discussed accordingly. The primary breakup of liquid jet experiences two physical processes: the column breakup and the surface breakup. The column breakup is dominated by RT instability from gasliquid acceleration while the surface breakup is dominated by KH instability from gasliquid shearing. The oscillation of the local pressure around the jet surface should be the main mechanism of the generation and evolution of the surface wave. The recirculation flow generates leeward the jet column since the interaction of the supersonic flow and the continuous liquid column. Therefore, the spray near the bottom wall contains two portions: the shearing spray from the surface breakup and the transporting spray through the recirculation flow.

    参考文献
    相似文献
    引证文献
引用本文

李春,沈赤兵,李清廉,等.超声速气流中液体横向射流一次破碎过程[J].国防科技大学学报,2019,41(4):73-78.
LI Chun, SHEN Chibing, LI Qinglian, et al. Primary breakup process of liquid jet in supersonic crossflow[J]. Journal of National University of Defense Technology,2019,41(4):73-78.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-03-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-07-18
  • 出版日期: 2019-08-28
文章二维码