基于前景理论和证据推理的混合型多属性决策方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(71601183,L1534031);中国博士后科学基金资助项目(2017M623415)


Method for hybrid multi-attribute decision making based on prospect theory and evidential reasoning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对属性权重完全未知的混合型多属性决策问题,提出一种基于前景理论和证据推理的决策方法。通过直觉模糊数对精确数、区间数和语言变量3种混合型属性的决策信息进行统一,根据前景理论对决策信息进行转化;提出基于直觉模糊熵与相似度的属性可靠性评估方法,结合属性重要度确定属性权重;采用证据推理算法集结属性信息,得到方案的综合前景值,并以此进行方案排序。算例分析结果表明,所提方法具有较强的区分能力,能够有效降低决策结果的不确定性,对混合型多属性决策问题具有较好的适用性。

    Abstract:

    For the hybrid multi-attribute decision making problems with completely unknown attribute weights, a decision-making method based on the prospect theory and the evidential reasoning was proposed. The decisionmaking information of three kinds of hybrid attributes including precision numbers, interval numbers and linguistic variables was unified by intuitionistic fuzzy numbers and transformed according to the prospect theory. An attribute reliability evaluation method based on intuitionistic fuzzy entropy and similarity was proposed. And the attribute weights were determined by combining the importance of attribute. The evidential reasoning algorithm was used to assemble the attribute information to obtain the comprehensive prospect values of alternatives, and then the alternatives can be sorted. The results of numerical example analysis show that the proposed method has a strong discriminating ability and can effectively reduce the uncertainty of decisionmaking results. The proposed method has good applicability to hybrid multi-attribute decision making problems.

    参考文献
    相似文献
    引证文献
引用本文

罗承昆,陈云翔,顾天一,等.基于前景理论和证据推理的混合型多属性决策方法[J].国防科技大学学报,2019,41(5):49-55.
LUO Chengkun, CHEN Yunxiang, GU Tianyi, et al. Method for hybrid multi-attribute decision making based on prospect theory and evidential reasoning[J]. Journal of National University of Defense Technology,2019,41(5):49-55.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-06-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-09-30
  • 出版日期: 2019-10-28
文章二维码