装备剩余寿命预测平行仿真中模型动态演化方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家部委基金资助项目(9140A04020115JB34011); 河北省自然科学基金资助项目(F2019506029)


Model dynamic evolution method of parallel simulation for equipment remaining useful life prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    装备平行仿真中的一个重要概念是实时数据驱动的模型动态演化,但是至今仍缺乏具体应用领域的实现方法。以带未知离散冲击的混合退化装备剩余寿命预测为背景,以多态Wiener状态空间模型为演化对象,提出一种装备平行仿真中模型动态演化方法,包括基于交互多模型强跟踪滤波的模型软切换和基于期望最大化算法的模型参数在线估计,并实现了基于平行仿真的装备剩余寿命实时预测。利用某轴承退化数据进行实例研究,结果表明该方法能有效提高仿真逼真度,剩余寿命预测的准确度较高、不确定性较小,具有较高工程应用价值。

    Abstract:

    An important concept in equipment parallel simulation is the model evolution driven by realtime data, but there is still a lack of model evolution method for specific application areas. Against the background of remaining useful life prediction for hybrid degradation equipment with unknown discrete shock, the polymorphic Wiener state space model was regarded as the evolutionary object and a model dynamic evolution method of equipment parallel simulation was put forward, including the interactive multiple model strong tracking filtering based model soft switch and the expectation maximum algorithm based online estimation of model parameters. Furthermore, the parallel simulation based realtime prediction of equipment remaining useful life was realized. A case study was conducted by using a bearing degradation data. The results show that the method can effectively improve the simulation fidelity and the remaining useful life obtained by the proposed method has higher prediction accuracy and smaller uncertainty, implying a high practical engineering value.

    参考文献
    相似文献
    引证文献
引用本文

葛承垄,朱元昌,邸彦强,等.装备剩余寿命预测平行仿真中模型动态演化方法[J].国防科技大学学报,2019,41(5):118-127.
GE Chenglong, ZHU Yuanchang, DI Yanqiang, et al. Model dynamic evolution method of parallel simulation for equipment remaining useful life prediction[J]. Journal of National University of Defense Technology,2019,41(5):118-127.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-06-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-09-30
  • 出版日期: 2019-10-28
文章二维码