等离子体与高功率微波相互作用中电子分布特性
作者:
作者单位:

(国防科技大学 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037)

作者简介:

李志刚(1990—),男,山东济宁人,助理研究员,博士,E-mail:class1_48@163.com

通讯作者:

中图分类号:

TN01;O539

基金项目:

安徽省自然科学基金资助项目(1908085MF205)


Distributions of the electron in the interactions between high power microwave and plasma
Author:
Affiliation:

(State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电子数密度是表征等离子体物理特性的一项重要因素,在等离子体与高功率微波的相互作用中,等离子体对入射电磁波的吸收、衰减和屏蔽等电磁特性可通过电子数密度的变化进行表征。基于等离子体流体近似研究方法,利用COMSOL软件求解等离子体中的波动方程、电子传递方程和重粒子传递方程,计算分析了等离子体与高功率微波相互作用中的电子分布特性,重点分析了相互作用中平均电子数密度和平均电子能的数值和空间分布变化过程。研究表明,在高功率微波作用下,等离子体区域电子数密度在数值上会产生剧烈的阶跃变化,形成雪崩效应,在空间分布上电子数密度峰值产生趋于入射方向移动的变化;电子能的变化与入射波激励和电子数密度相关,随入射激励增加呈增长趋势,随电子数密度的增加而减小。

    Abstract:

    As an important physical parameter, the electron number density is usually used to analyze the change process of the interaction between high power microwave and plasma. The change characteristics of electrons in plasma was studied by combining the wave equation, the electron transport equation and the heavy species transport equation by using the fluid approximate method, and the average electron number density and electron energy in the plasma region were calculated with the help of the software COMSOL. Result shows that the electron avalanche effect in the plasma appears as HPM(high power microwave) propagates inside the plasma, the electron numerical density increases rapidly, and the peak value shift towards the incident direction of HPM. In addition, it can be admitted that the electron energy increases with the HPM and decreases as the electron density increases.

    参考文献
    相似文献
    引证文献
引用本文

李志刚,陈宗胜.等离子体与高功率微波相互作用中电子分布特性. Distributions of the electron in the interactions between high power microwave and plasma[J].国防科技大学学报,2020,42(1):10-17.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-01-19
  • 出版日期: 2020-02-28
文章二维码