Volterra级数模型的非线性压缩测量辨识算法
作者:
作者单位:

(1. 中国科学院国家空间科学中心, 北京 100190;2. 中国科学院大学, 北京 100049)

作者简介:

邱棚(1991—),男,北京人,博士研究生,E-mail:qpeng0504@163.com; 翟光杰(通信作者),男,教授,博士,博士生导师,E-mail:gjzhai@nssc.ac.cn

通讯作者:

中图分类号:

TN95

基金项目:

国家自然科学基金资助项目(61605218);中国科学院国防创新基金资助项目(CXJJ-17S023)


Nonlinear compressed measurement identification based on Volterra series
Author:
Affiliation:

(1. National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;2. University of Chinese Academy of Sciences, Beijing 100049, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对非线性系统的辨识问题,提出了非线性压缩测量辨识算法,且推导出了一种符合压缩感知测量准则的测量模型。相比递归最小二乘法,该方法极大地减少了所需的测量数,使得高阶Volterra级数辨识成为可能。此外,还分析了实际应用中的各项因素对辨识准确性的影响,如信号稀疏度、测量噪声、测量矩阵形式等。

    Abstract:

    For the identification problem of nonlinear systems, the accuracy and stability of the nonlinear compression measurement identification algorithm were proved in the simulation experiment, and the complete signal was obtained accurately only by using constant multiple measurement times of the signal sparsity. Compared with the least square method, the proposed algorithm has greatly reduced the needed measurements, therefore, it is possible for the identification of high-order Volterra series. Furthermore, the influence of all factors on the accuracy of system identification was analyzed, such as signal sparsity, measurement noise, measurement matrix form, etc.

    参考文献
    相似文献
    引证文献
引用本文

邱棚,姚旭日,李鸣谦,等. Volterra级数模型的非线性压缩测量辨识算法[J].国防科技大学学报,2020,42(1):125-132.
QIU Peng, YAO Xuri, LI Mingqian, et al. Nonlinear compressed measurement identification based on Volterra series[J]. Journal of National University of Defense Technology,2020,42(1):125-132.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-01-19
  • 出版日期: 2020-02-28
文章二维码