高铁大风预警模式挖掘
作者:
作者单位:

(1. 西南交通大学 信息科学与技术学院, 四川 成都 611756;2. 西南交通大学 土木工程学院, 四川 成都 610031)

作者简介:

滕飞(1984—),女,山东泰安人,副教授,博士,硕士生导师,E-mail:fteng@swjtu.edu.cn

通讯作者:

中图分类号:

TN181

基金项目:

四川省科技计划资助项目(2019YJ0214,2018JY0549,2018JY0294)


Pattern mining of gale warning for high-speed railway
Author:
Affiliation:

(1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China;2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高铁大风预警的传统方法基于风速预测,当瞬时值高于限速阈值时触发报警,存在大量的误报警,不必要的限速控制影响了高铁行车效率。创新地提出了基于序列模式的预警方法,旨在挖掘报警事件前序数据中的频繁模式,找出报警事件的变化规律,通过滤除与非预警序列共有的频繁模式,得到预警序列独有的序列特征,构建了预警模式库。经兰新高铁沿线的监测数据验证,该方法在提高预测准确率的基础上降低了漏报率,同时有效地减少了模式匹配所需的时间,为提前预警预留充分的时间窗口,更加符合实际应用的需求。

    Abstract:

    The traditional method of alarming high-speed rail traffic in gale is based on an instantaneous threshold. Although it covers all alarm events, there are a lot of unnecessary alarms, which affect the efficiency of high-speed rail traffic. An early warning method based on sequence pattern was proposed. It aimed at mining frequent patterns in the preorder data and finding out the changing rules of alarm events. The unique sequence characteristics of early warning sequences were obtained by filtering out the public frequent patterns of non-early warning sequences, and a database of early warning patterns was constructed. Through the verification of monitoring data along Lanzhou-Urumchi high-speed railway, the method can improve the accuracy of prediction, and reduce the rate of missing reports concurrently. It reduces the time required for pattern matching effectively, and reserves sufficient time windows for early warning, which can accord more with the practical application requirements.

    参考文献
    相似文献
    引证文献
引用本文

滕飞,刘鉴竹,祝锦烨,等.高铁大风预警模式挖掘[J].国防科技大学学报,2020,42(2):55-63.
TENG Fei, LIU Jianzhu, ZHU Jinye, et al. Pattern mining of gale warning for high-speed railway[J]. Journal of National University of Defense Technology,2020,42(2):55-63.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-04-29
  • 出版日期: 2020-04-28
文章二维码