采用改进遗传算法的舰载机保障调度方法
作者:
作者单位:

(1. 哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001;2. 国防科技大学 装备综合保障技术重点实验室, 湖南 长沙 410073)

作者简介:

刘珏(1990—),男,贵州惠水人,博士研究生,E-mail:303542156@qq.com; 王能建(通信作者),男,教授,博士,博士生导师,E-mail:wangnengjian@hrbeu.edu.cn

通讯作者:

中图分类号:

TN95

基金项目:

国家部委基金资助项目(614200301030217);国防基础科研计划资助项目(JCKY2016206A001)


Deck operation scheduling method of carrier-based aircraft based on improved genetic algorithm
Author:
Affiliation:

(1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China;2. Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    舰载机保障作业过程受到多种资源约束,同时可能存在突发事件的干扰。针对此特点,分析并制定干扰情况下的模型修正策略。在遗传算法中引入禁忌搜索算子改进传统遗传算法的变异操作,并通过具体实例进行仿真验证,其结果证明改进后的遗传算法在优化含干扰事件的多机保障问题时效率更高,并通过甘特图直观地反映重调度方案,为真实情况下有效处理舰载机保障过程中的干扰事件奠定理论基础。

    Abstract:

    The support operation process of ship-borne aircraft is constrained by multiple resources, and the interference of emergency may occur at the same time. In view of this characteristic, the amendment strategy of model under the interference condition was analyzed and worked out. The Tabu search operator was introduced into the genetic algorithm to improve the mutation operation of the traditional process. And the simulation results show that the improved genetic algorithm is more efficient than the traditional genetic algorithm in optimizing the multi-carrier aircraft support problem with interference events. The rescheduling scheme is reflected intuitively by Gantt chart. As a result, this method lays a theoretical foundation for effectively dealing with the interference events in the process of ship-borne aircraft support in the real situation.

    参考文献
    相似文献
    引证文献
引用本文

刘珏,王能建,罗旭,等.采用改进遗传算法的舰载机保障调度方法[J].国防科技大学学报,2020,42(2):194-205.
LIU Jue, WANG Nengjian, LUO Xu, et al. Deck operation scheduling method of carrier-based aircraft based on improved genetic algorithm[J]. Journal of National University of Defense Technology,2020,42(2):194-205.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-04-29
  • 出版日期: 2020-04-28
文章二维码