干扰抑制类生成式对抗网络
作者:
作者单位:

(1. 中国人民解放军92330.部队, 山东 青岛 266000;2. 海军工程大学 电子工程学院, 湖北 武汉 430033;3. 云南民族大学 数学与计算机科学学院, 云南 昆明 650500;4. 海军工程大学 电气工程学院, 湖北 武汉 430033)

作者简介:

李春腾(1992—),男,山东威海人,博士研究生,E-mail:249170952@qq.com; 蒋宇中(通信作者),男,教授,博士,博士生导师,E-mail:scholarqh@163.com

通讯作者:

中图分类号:

TN911.7

基金项目:

国家自然科学基金资助项目(41631072)


Interference suppression generative adversarial nets
Author:
Affiliation:

(1. The PLA Unit 92330, Qingdao 266000, China;2. College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China;3. Academy of Mathematics and Computer Science, Yunnan Nationalities University, Kunming 650500, China;4. College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为进一步改善超低频频段的通信质量,在传统改进广义旁瓣抵消算法的基础上,提出新的超低频干扰抑制算法——生成式旁瓣抵消算法。该算法将人工智能研究热点之一的生成式对抗网络模型引入广义旁瓣抵消算法中,通过优化设计生成模型的网络结构及相关超参数,有效地解决了原算法存在的期望信号残留问题,为旁瓣抵消通道中的后级滤波算法提供了与主通道相关性更强的干扰参考信息,从而提高了算法对主通道干扰估计的准确性。为了验证优化后生成模型的有效性以及所提算法对不同类别干扰的抑制能力,在实验室环境下搭建实验平台,设计了多组对照实验。实验结果表明:优化后的生成模型具有较好的生成能力、较好的鲁棒性以及相对较低的运算复杂度;相比于传统改进的广义旁瓣抵消算法,所提算法进一步提高了信号带宽内的信干噪比。

    Abstract:

    In order to further improve the communication quality of the extremely-low-frequency communication further, based on the traditional improved generalized sidelobe cancellation, a new interference suppression algorithm in the field of extremely-low-frequency communication called generative sidelobe cancellation algorithm was proposed. Generative adversarial nets as one of the hot research topics in artificial intelligence was introduced into generalized sidelobe cancellation, the network structure and relevant hyperparameters of the generative model were designed and optimized, addressing the problem of the residual desired signal existing into the original algorithm effectively, providing more relevant reference information about the interference components in the main channel for the next-stage filtering algorithm of sidelobe cancellation channel, thereby enhancing the estimation accuracy of the interference components in the main channel. In order to validate the effectiveness of the optimized generative model and the suppression ability of the proposed algorithm on different types of interferences, an experimental platform was set up under the laboratory environment and multiple sets of controlled experiments were designed. The experimental results show that the optimized generative model has better generative ability, better robustness and relatively lower computational complexity. Compared with the traditional improved algorithm, the proposed algorithm can further improve the signal-to-interference-plus-noise ratio within the signal bandwidth further.

    参考文献
    相似文献
    引证文献
引用本文

李春腾,蒋宇中,刘芳君,等.干扰抑制类生成式对抗网络[J].国防科技大学学报,2020,42(5):1-8.
LI Chunteng, JIANG Yuzhong, LIU Fangjun, et al. Interference suppression generative adversarial nets[J]. Journal of National University of Defense Technology,2020,42(5):1-8.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-10-21
  • 出版日期: 2020-10-28
文章二维码