利用最小二乘支持向量机求解潜艇内外磁场映射模型
作者:
作者单位:

(海军工程大学 电气工程学院, 湖北 武汉 430033)

作者简介:

刘胜道(1973—),男,湖北天门人,副教授,博士,硕士生导师,E-mail:18986151073@189.cn

通讯作者:

中图分类号:

TM153.1

基金项目:

国家自然科学基金资助项目(51377165)


Least squares support vector machine for solving reflection model of submarine′s internal and external magnetic field
Author:
Affiliation:

(College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高潜艇磁隐身能力,应对潜艇固定磁场进行实时监测,提出利用最小二乘支持向量机的潜艇内外磁场映射方法。结合内外映射法和最小二乘支持向量机原理,通过交叉验证优化模型参数,建立由内到外的潜艇磁场映射模型。以潜艇外部垂向固定磁场变化量为分析对象,仿真和实验结果均与标准值吻合良好。与径向基神经网络算法相比,该方法的泛化能力和推算精度有明显提高,且更符合工程实际,对闭环消磁技术的研究具有指导意义。

    Abstract:

    For the promotion of submarine′s magnetic silencing ability, it is necessary to monitor the submarine′s permanent magnetic field immediately, and a reflection method of submarine′s internal and external magnetic field based on LS-SVM(least squares support vector machine) was proposed. Combined with internal and external reflection method and LS-SVM theory, an inside-out reflection model of submarine′s magnetic field was established by optimizing the model parameter with CV (cross validation). With the variation in the vertical component of the submarine′s external permanent magnetic field as an object of analysis, the extrapolation answers of simulation and hull experiment agreed well with the standard value. Compared to the RBFNN (radius basis function neural network), the proposed method has better generalization ability and extrapolation accuracy apparently, fits more in engineering facts, and can provide useful guidance in the research for closed-loop degaussing technology.

    参考文献
    相似文献
    引证文献
引用本文

刘胜道,何保委,赵文春,等.利用最小二乘支持向量机求解潜艇内外磁场映射模型[J].国防科技大学学报,2020,42(6):77-81.
LIU Shengdao, HE Baowei, ZHAO Wenchun, et al. Least squares support vector machine for solving reflection model of submarine′s internal and external magnetic field[J]. Journal of National University of Defense Technology,2020,42(6):77-81.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-05-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期: 2020-12-28
文章二维码