面向癫痫脑电的简化深度学习模型
作者:
作者单位:

(1. 湖南师范大学 信息科学与工程学院, 湖南 长沙 410081;2. 湖南师范大学 数学与统计学院, 湖南 长沙 410081;3. 湖南大学 信息科学与工程学院, 湖南 长沙 410082)

作者简介:

张锦(1979—),男,湖南长沙人,教授,博士,博士生导师,E-mail:jinzhang@hunnu.edu.cn

通讯作者:

中图分类号:

TP391.4

基金项目:

国家教育部产学合作协同育人基金资助项目(201702001043,201801037136,201901051021); 湖南省教育厅创新平台开放基金资助项目(15K082); 湖南省研究生教改基金资助项目(JG2018A012); 湖南省交通运输厅科技进步与创新计划资助项目(201927)


Simplified deep learning model for epilepsy electroencephalogram
Author:
Affiliation:

(1. College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China; 2. College of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China;3. College of Information Science and Engineering, Hunan University, Changsha 410082, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对脑电信号随机性强、动态变化迅速等特点,提出了一种简化深度学习模型研究癫痫脑电识别问题。提出的模型以一维卷积神经网络为基础,在结构方面简化了卷积层、池化层等以提高模型效率,在整体框架方面应用了Keras框架,在训练优化算法方面采用RMSProp算法作为模型优化算法,通过预定义的目标函数来进行损失估计,模型设计上加入了批标准化层和全局均值池化层。基于所提模型,从三个方面研究了癫痫脑电识别问题,即:利用经验模态分解,分别选取前三阶、前五阶、前七阶、前八阶的本征模态函数分量,在简化模型上进行对比分析;利用提出模型所具备的深度学习特点,直接识别原始脑电信号而无须特征提取环节;增加了三种不同方法分别提取7类特征,对相同的脑电数据进行对比分析。性能分析结果表明:对于五类不同的脑电信号,前三阶的本征模态函数分量的识别率达到92.1%,比其他几种处理方式识别率高;前八阶的本征模态分量识别率不及原始信号,表明人工数据处理时会给数据带来噪声; 所提出的简化深度学习模型能高效处理癫痫脑电识别问题,具备较高效率和较好性能。

    Abstract:

    A simplified deep learning model was proposed to solve the problem of recognition based on the strong randomness and rapid dynamic change of EEG(epilepsy electroencephalogram) signals. The proposed model utilizes one-dimensional convolutional neural network, which simplifies the convolutional layers and pooling layers to improve the efficiency. Based on the overall Keras framework, the RMSProp algorithm was used for the model in the training process, and the algorithm estimated the loss through a predefined objective function. The model design incorporated a batch normalization layer and a global mean pooling layer. The EEG recognition was researched from two aspects based on the proposed model:with empirical mode decomposition, the first three orders, the first five orders, the first seven orders, and the first eight orders of intrinsic mode functions were selected for comparative analysis on the simplified model. Because of deep learning characteristics, the proposed model can directly recognize the original EEG signals without feature extraction. After extracting 7 types of features,it adds three different methods to compare the accuracy. The experimental results show that:the recognition rate of the first three orders of intrinsic mode function reaches the level of 92.1% for the five different types of EEG signals, which is higher than that of other features. The first eight orders′ recognition rate is lower than the original signal, which indicates that data preprocessing will lead to the noise. The proposed simplified deep learning model can effectively deal with the epileptic EEG recognition problem with higher efficiency and better performance.

    参考文献
    相似文献
    引证文献
引用本文

张锦,刘熔,田森,等.面向癫痫脑电的简化深度学习模型[J].国防科技大学学报,2020,42(6):106-111.
ZHANG Jin, LIU Rong, TIAN Sen, et al. Simplified deep learning model for epilepsy electroencephalogram[J]. Journal of National University of Defense Technology,2020,42(6):106-111.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期: 2020-12-28
文章二维码