适应任务的模块化卫星快速构建优化决策方法
作者:
作者单位:

(国防科技大学 电子科学学院, 湖南 长沙 410073)

作者简介:

陈浩(1982—),男,重庆人,教授,博士,硕士生导师,E-mail:hchen@nudt.edu.cn; 伍江江(通信作者),男,副教授,博士,E-mail:wujiangjiang@nudt.edu.cn

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金资助项目(61806211,U19A2058); 湖南省自然科学基金资助项目(2020JJ4103)


Optimization decision method for task-oriented modular satellite rapid construction
Author:
Affiliation:

(College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    如何根据应急航天任务,在满足各种约束的前提下,从型号众多、能力各异的卫星平台及有效载荷中快速决策效费比最佳的卫星构造方案引起了越来越多的关注,这就是适应任务的模块化卫星快速构建优化决策问题。在深入分析该问题特点的基础上,建立优化决策数学模型,提出基于遗传算法的优化决策方法,为处理遗传算法迭代过程中产生的不可行解引入基于罚函数法的约束处理方法。针对罚函数法中惩罚系数难于确定的特点,设计惩罚系数自适应调整的动态罚函数机制。定量化实验及分析结果表明:该方法能有效解决适应任务的模块化卫星快速构建优化决策问题。

    Abstract:

    Making an optimized and practicable satellite assemble plan, which is closely linked to all the various constraints, is a difficult problem. This issue has attracted wide attention all over the world. In linght of this, the problem′s characteristics were analyzed, the mathematical optimization model was established, and an optimization decision method based on genetic algorithm was proposed. A constraint handling method based on penalty function was introduced to deal with the infeasible solutions generated in the iterative optimization process. In order to alleviate the difficulty of the penalty coefficient setting, a mechanism of penalty coefficient self-adaptive adjustment was designed. Some experiments were conducted to validate the correctness and practicability of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

陈浩,彭双,杜春,等.适应任务的模块化卫星快速构建优化决策方法[J].国防科技大学学报,2021,43(1):79-85.
CHEN Hao, PENG Shuang, DU Chun, et al. Optimization decision method for task-oriented modular satellite rapid construction[J]. Journal of National University of Defense Technology,2021,43(1):79-85.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-26
  • 出版日期: 2021-02-28
文章二维码