结合YdUaVa颜色模型和改进MobileNetV3的视频烟雾检测方法
作者:
作者单位:

(国防科技大学 电子科学学院, 湖南 长沙 410073)

作者简介:

刘通(1982—),男,河南南阳人,副研究员,博士,E-mail:liutong1129@126.com

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金资助项目(61303188);湖南省自然科学基金资助项目(2020JJ4670);基础加强计划技术领域基金资助项目(2019-JCJQ-JJ-209)


Video smoke detection method combining YdUaVa color model and improved MobileNetV3
Author:
Affiliation:

(College of Electronic Science, National University of Defense Technology, Changsha 410073, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低视频烟雾检测中的虚警率和提升检测效率,提出YdUaVa颜色模型,该模型可以表征烟雾的空间域分布特性和时间域变化特性。利用该颜色模型快速筛选出疑似烟雾图像块,降低虚警率和提升运算效率。提出改进的MobileNetV3网络结构,用于提取图像深度特征并对疑似烟雾图像块进行分类识别,检测视频中是否存在烟雾。视频烟雾检测仿真结果表明:该方法准确率和检测帧率高,虚警率低。

    Abstract:

    In order to reduce the false alarm rate and improve the detection efficiency for video smoke detection, the YdUaVa color model was proposed, which can characterize the spatial distribution and temporal variation of smoke. By using this color model to quickly screen the suspected smoke image blocks, the false alarm rate was reduced and the computing efficiency was improved. An improved MobileNetV3 network structure was proposed, which is aimed to extract deep features of images and to classify the suspected smoke image blocks so as to detect whether there is smoke in a video. The simulation results of video smoke detection show that this method has high accuracy, high detection frame rate, and low false alarm rate.

    参考文献
    相似文献
    引证文献
引用本文

刘通,程江华,华宏虎,等.结合YdUaVa颜色模型和改进MobileNetV3的视频烟雾检测方法[J].国防科技大学学报,2021,43(5):80-85.
LIU Tong, CHENG Jianghua, HUA Honghu, et al. Video smoke detection method combining YdUaVa color model and improved MobileNetV3[J]. Journal of National University of Defense Technology,2021,43(5):80-85.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-09-29
  • 出版日期: 2021-10-28
文章二维码