正规形法在弹箭非线性运动分析中的应用
作者:
作者单位:

(1. 南京理工大学 能源与动力工程学院, 江苏 南京 210094;2. 瞬态冲击技术重点实验室, 北京 102202)

作者简介:

李东阳(1992—), 女,河南南阳人,博士研究生,E-mail:dyli00@126.com; 常思江(通信作者),男,广西恭城人,副研究员,博士,硕士生导师,E-mail:ballistics@126.com

通讯作者:

中图分类号:

TJ760.1

基金项目:

瞬态冲击技术重点实验室基金资助项目(6142606183107)


Applying the method of normal forms to projectile nonlinear motion analysis
Author:
Affiliation:

(1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;2. Science and Technology on Transient Impact Laboratory, Beijing 102202, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非线性气动力对弹箭运动特性具有重要影响,而其复杂性和有效分析工具的缺乏往往制约了弹箭非线性运动理论的发展。为探索正规形方法在弹箭非线性运动分析中的应用,构造了考虑二次非线性阻尼和七次非线性静力矩下攻角方程的正规形,进而求得攻角的通用解析解,通过数值积分验证了其在较大攻角范围内的有效性,该解析解也同样适用于无阻尼角运动和更高或更低阶静力矩作用下的角运动分析。基于正规形方法导出的初始条件关系,给出了保守但简洁的稳定初始条件范围的计算方法,结合平衡点分析,可较为准确地预测弹箭在非线性气动力作用下形成的极限环及其稳定性。

    Abstract:

    Nonlinearity especially from aerodynamic coefficients in high orders has a significant effect on projectile dynamics. Its investigation has been hindered in the conventional analysis by the complexity in nonlinear motion equations and the lack of appropriate analysis tools. Therefore, the widely used method of normal forms was introduced for the analysis of projectile angular motion. Considering the second order damping and the seventh order static moment terms, the normal form of the angular motion was derived and thus the universal analytical solution of the angle of attack is obtained, which is verified to show good agreement with the numerical integration results over a wide range of angle of attack and also demonstrates its being applicable to the undamped case and the cases with lower or higher order of static moment. In addition, the obtained relationship between initial conditions can give a conventional but simple determination of the region of attraction to the origin. Also, the amplitude equation combined with the equilibrium analysis provides a accurate prediction for the existence and stability of limit cycle in angular motion.

    参考文献
    相似文献
    引证文献
引用本文

李东阳,常思江,王中原,等.正规形法在弹箭非线性运动分析中的应用[J].国防科技大学学报,2022,44(2):44-54.
LI Dongyang, CHANG Sijiang, WANG Zhongyuan, et al. Applying the method of normal forms to projectile nonlinear motion analysis[J]. Journal of National University of Defense Technology,2022,44(2):44-54.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-01
  • 出版日期: 2022-04-28
文章二维码