面向多最优解组合优化问题的决策求解算法
作者:
作者单位:

(国防科技大学 智能科学学院, 湖南 长沙 410073)

作者简介:

胡振震(1984—),男,浙江武义人,博士研究生,E-mail:hzzmail@163.com; 陈璟(通信作者),男,教授,博士,博士生导师,E-mail:chenjing001@vip.sina.com

通讯作者:

中图分类号:

O221,O158

基金项目:

国家自然科学基金资助项目(61702528,61806212);湖南省自然科学基金资助项目(2019JJ50724)


Decision solving algorithm for multiple optimal solution combinatorial optimization problem
Author:
Affiliation:

(College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对具有固定物品总和、多最优解特征的组合优化问题,以固定总和实数子集问题和购买鸡翅问题为例,给出了这类多最优解组合优化问题的形式化表示。在分析枚举等经典算法基础上,提出了基于整数状态表示和实数状态表示的0-1决策递归搜索多最优解动态规划算法。针对该算法在最优解数量较大时,时间复杂度趋向O(mn)的问题,提出了基于相同决策路径合并和基于0-x决策的两种改进算法。实验中两种改进算法的计算时间基本符合与O(nb+nm)的正比关系,表明对于这类多最优解组合优化问题具有良好的求解性能。

    Abstract:

    Oriented to the combinatorial optimization problem with fixed sum of goods and multiple optimal solutions, the problem formulation was given by two examples:the fixed sum real number subset problem and buying wings problem. A integer state and a real number state multi-optimal solution dynamic programming algorithm based on 0-1 decision recursive search was put forward on the foundation of analysis of some classical methods like enumeration. In order to cope with the problem of time complexity tending to the extreme O(mn) when the number of optimal solutions is large for the proposed algorithms, two improved algorithms, the same decision path fusion algorithm and the 0-x decision based algorithm were proposed. The computation time of the improved algorithms is consistent with the proportional relation with O(nb+nm) on the whole in experiments, which indicates that these algorithms have good performance for this type of problem.

    参考文献
    相似文献
    引证文献
引用本文

胡振震,袁唯淋,罗俊仁,等.面向多最优解组合优化问题的决策求解算法[J].国防科技大学学报,2022,44(3):31-40.
HU Zhenzhen, YUAN Weilin, LUO Junren, et al. Decision solving algorithm for multiple optimal solution combinatorial optimization problem[J]. Journal of National University of Defense Technology,2022,44(3):31-40.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-02
  • 出版日期: 2020-06-28
文章二维码