面向时空交通栅格流量预测的3D通道注意力网络
作者:
作者单位:

(1. 北京交通大学 计算机与信息技术学院, 北京 100044;2. 中国民航信息网络股份有限公司, 北京 101318)

作者简介:

童凯南(1996—),男,北京人,硕士研究生,E-mail:kntong@bjtu.edu.cn; 万怀宇(通信作者),男,副教授,博士,博士生导师,E-mail:hywan@bjtu.edu.cn

通讯作者:

中图分类号:

TP391

基金项目:

中国博士后科学基金资助项目(2021M700365)


3D channel-wise attention network for spatio-temporal traffic raster flow prediction
Author:
Affiliation:

(1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;2. TravelSky Technology Limited, Beijing 101318, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    城市交通流量预测对交通管理和公共安全具有重要意义。然而,交通栅格流量数据中的规律在时刻变化,在城市中存在全局范围的时空间关系,并且不同特征通道在每个城市区域上有不同的重要性。为解决这些挑战并做出更准确的预测,设计了一种新颖的时空神经网络模型——3D通道注意力网络(three-dimensional channel-wise attention networks,3D-CANet)。提出一个3D通道内注意力(three-dimensional inner channel attention,3D-InnerCA)单元来动态捕获各个通道中不同的全局时空相关性,同时设计通道间注意力(inter channel attention,InterCA)单元来自适应地重校准每个区域上不同特征通道的贡献。在3个真实交通栅格流量数据集上的实验结果表明,3D-CANet模型的预测能力优于其他对比方法,证明了模型的有效性。

    Abstract:

    Urban traffic flow forecasting is of great significance for traffic management and public safety. However, the correlations of traffic raster flow change with time. There are global spatio-temporal correlations in the city, and the contributions of channel-wise features vary on each city region. To tackle these challenges and make more accurate prediction, a novel spatio-temporal neural network model, named 3D-CANet (three-dimensional channel-wise attention network), was designed. A 3D-InnerCA (three-dimensional inner-channel attention) unit was proposed to dynamically capture the global spatio-temporal correlations for different channel-wise features. Meanwhile, an InterCA (inter-channel attention) unit was designed to adaptively recalibrate the contributions of different channel-wise features on each region. The experimental results on three real-world traffic raster flow datasets demonstrate that the predictive performance of the 3D-CANet model was better than the others,which proved the validity of the model proposed.

    参考文献
    相似文献
    引证文献
引用本文

童凯南,林友芳,刘军,等.面向时空交通栅格流量预测的3D通道注意力网络[J].国防科技大学学报,2022,44(3):41-49.
TONG Kainan, LIN Youfang, LIU Jun, et al.3D channel-wise attention network for spatio-temporal traffic raster flow prediction[J]. Journal of National University of Defense Technology,2022,44(3):41-49.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-02
  • 出版日期: 2020-06-28
文章二维码