基于不稳定性采样的主动学习方法
作者:
作者单位:

(南京航空航天大学 计算机科学与技术学院, 江苏 南京 211106)

作者简介:

何花(1995—),女,重庆人,硕士研究生,E-mail:hehua@nuaa.edu.cn; 黄圣君(通信作者),男,教授,博士,博士生导师,E-mail:huangsj@nuaa.edu.cn

通讯作者:

中图分类号:

TP181

基金项目:

新一代人工智能重大资助项目(2020AAA0107000);江苏省自然科学基金资助项目(BK20211517)


Active learning method based on instability sampling
Author:
Affiliation:

(College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的主动学习方法往往仅基于当前的目标模型来挑选样本,而忽略了历史模型所蕴含的对未标注样本预测稳定性的信息。因此,提出基于不稳定性采样的主动学习方法,依据历史模型的预测差异来估计每个未标注样本对提高模型性能的潜在效用。该方法基于历史模型对样本的预测后验概率之间的差异来衡量无标注样本的不稳定性,并挑选最不稳定的样本进行查询。在多个数据集上的大量实验结果验证了方法的有效性。

    Abstract:

    Traditional active learning methods select examples by only considering the predictions of the current model. However, these methods neglect the information of the previous trained models, which reflect the stability of the prediction sequence for each unlabeled example during the active learning stage. Thus, a novel active learning method with instability sampling was proposed, which attempted to estimate the potential utility of each unlabeled examples for improving the model performance based on the difference among predictions of the previous models. The proposed method measured the instability of unlabeled example based on the difference between the posterior probabilities predicted by the previous models, and the example with the largest instability was selected to be queried. Extensive experiments were conducted on multiple datasets with diverse classification models. The experimental results validate the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

何花,谢明昆,黄圣君.基于不稳定性采样的主动学习方法[J].国防科技大学学报,2022,44(3):50-56.
HE Hua, XIE Mingkun, HUANG Shengjun. Active learning method based on instability sampling[J]. Journal of National University of Defense Technology,2022,44(3):50-56.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-02
  • 出版日期: 2020-06-28
文章二维码