无人机小样本条件下遮挡和混淆目标识别方法
作者:
作者单位:

(国防科技大学 智能科学学院, 湖南 长沙 410073)

作者简介:

吴立珍(1982—),男,江苏徐州人,助理研究员,博士,E-mail:lzwu@nudt.edu.cn; 牛轶峰(通信作者),男,教授,博士,博士生导师,E-mail:niuyifeng@nudt.edu.cn

通讯作者:

中图分类号:

V279

基金项目:

国家自然科学基金资助项目(61876187)


Occlusion and confusion targets recognition method for UAV under small sample conditions
Author:
Affiliation:

(College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机对地目标识别过程中的小样本问题以及目标存在的遮挡和混淆情况,提出了一种融合自注意力机制的小样本目标识别模型。在利用元学习思想获取小样本学习能力的基础上,将自注意力机制学习目标内部各部分之间的上下文依赖关系引入模型,从而增强目标表征能力,以解决遮挡和混淆情况下有效特征不足的难题。为验证模型效果,通过对基准数据集和无人机航拍数据进一步加工,构建了遮挡和混淆目标数据集,设置了不同的遮挡程度和背景混淆率。通过在不同数据集上的验证,并与深度学习模型对比,证明提出的模型具有更高的学习效率和识别正确率。

    Abstract:

    Aiming at the problem of occlusion and confusion targets recognition for UAV (unmanned air vehicle) under small sample conditions, a target recognition model integrating self-attention mechanism and few-shot learning was proposed. On the basis of using the idea of meta learning to obtain the ability of few-shot learning, the self-attention mechanism to learn the context dependence between the internal parts of the target was introduced into the model, so as to enhance the target representation ability and solve the problem of insufficient effective features in the case of occlusion and confusion. In order to verify the effect of the model, the occlusion and confusion target datasets were constructed by further processing the reference datasets and UAV aerial photography data, and different occlusion degrees and background confusion rates were set. Through the verification on different datasets and compared with the deep learning model, the proposed model is proved to possess higher learning efficiency and recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

吴立珍,李宏男,牛轶峰.无人机小样本条件下遮挡和混淆目标识别方法. Occlusion and confusion targets recognition method for UAV under small sample conditions[J].国防科技大学学报,2022,44(4):13-21.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-20
  • 出版日期: 2022-08-28
文章二维码