增量元学习IDBD算法在轴频电场信号检测中的应用
作者:
作者单位:

(海军工程大学 电气工程学院, 湖北 武汉 430033)

作者简介:

卞强(1977—),男,江苏泰州人,副教授,博士,硕士生导师,E-mail:tzbianqiang@163.com

通讯作者:

中图分类号:

TB559

基金项目:

基础加强计划技术领域基金资助项目(2019-JCJQ-JJ-050)


Application of incremental meta-learning IDBD algorithm in signal detection of shaft-rate electric field
Author:
Affiliation:

(College of Electric Engineering, Naval University of Engineering, Hubei 430033, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高海洋环境电场背景中微弱舰船轴频电场的检测能力,针对传统的最小均方误差算法进行了改进,提出了一种基于增量元学习IDBD算法的自适应线谱增强器。利用所提算法对舰船缩比模型产生的实测轴频电场信号数据进行处理,结果表明该算法在低信噪比的情况下能够有效地将微弱轴频电场信号从宽带背景噪声中分离出来。所提算法相比于普通的自适应线谱算法,在改善信号的信噪比方面效果更加显著,且具有更快的收敛速度和更小的稳态误差,极大提高了舰船轴频电场的检测能力。

    Abstract:

    In order to improve the detection ability of weak ship shaft-rate electric field in the background of marine environment electric field, the ALE (adaptive line enhancement) based on incremental meta-learning IDBD (incremental delta-bar-delta) algorithm was proposed to improve the traditional LMS (least mean square) algorithm. The proposed algorithm was used to process the measured shaft-rate electric field signal data generated by the ship scale model. The results show that the algorithm can effectively separate the weak shaft-rate electric field signal from the broadband background noise under the condition of low SNR(signal-to-noise ratio). Compared with the ordinary ALE algorithm, the proposed algorithm has a more significant effect in improving the SNR of the signal, and has a faster convergence speed and a smaller steady-state error, which greatly improves the ability to test shaft-rate electric field of the ship.

    参考文献
    相似文献
    引证文献
引用本文

卞强,曾文仕,欧阳华,等.增量元学习IDBD算法在轴频电场信号检测中的应用[J].国防科技大学学报,2022,44(6):103-108.
BIAN Qiang, ZENG Wenshi, OUYANG Hua, et al. Application of incremental meta-learning IDBD algorithm in signal detection of shaft-rate electric field[J]. Journal of National University of Defense Technology,2022,44(6):103-108.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-01
  • 出版日期: 2022-12-28
文章二维码