无人机卫星导航系统的电磁干扰态势评估方法
作者:
作者单位:

(1. 陆军工程大学石家庄校区 电磁环境效应国防重点实验室, 河北 石家庄 050003;2. 海军航空大学, 山东 烟台 264000)

作者简介:

张庆龙(1987—),男,河北衡水人,博士研究生,E-mail:695231878@qq.com; 陈亚洲(通信作者),男,教授,博士,博士生导师,E-mail:chen_yazhou@sina.com

通讯作者:

中图分类号:

TN97

基金项目:

国家部委基金资助项目(LJ20182A040327)


Evaluation method of electromagnetic interference situation for satellite navigation system of unmanned aerial vehicle
Author:
Affiliation:

(1. National Key Laboratory on Electromagnetic Environment Effects, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China; 2. Naval Aeronautical University, Yantai 264000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在战场复杂电磁环境下,卫星导航接收机很容易受到电磁干扰而出现不定位的现象,针对这一现象,提出了一种基于环境感知无人机卫星导航接收机的电磁干扰态势评估方法。以干扰信号的特征参数、导航接收机未受干扰时的接收状态作为预测的输入,以接收机跟踪环路失锁时的效应阈值作为观测目标值,建立了极端梯度提升(extreme gradient boosting, XGBoost)的预测模型。在此基础上,给出了导航接收机电磁干扰态势的等级,提出了导航接收机在单源和双源电磁干扰下的态势评估方法。通过与高斯过程回归和支持向量机回归的预测方法进行比较,结果表明XGBoost方法具有更好的预测精度。依据该预测方法,综合利用技战术方案,有利于提高无人机在复杂电磁环境中的适应能力。

    Abstract:

    In the complex electromagnetic environment of the battlefield, satellite navigation receivers are susceptible to EMI (electromagnetic interference) and cannot be positioned. In response to this phenomenon, a method for evaluating the EMI situation of satellite navigation receivers based on unmanned aerial vehicle′s environmental perception was proposed. When the navigation receiver was not interfered, the characteristic parameters of the EMI and the receiving state of the navigation receiver were used as the input of the prediction. When the receiver tracking loop was lost, the effect threshold was used as the observation target value to establish the XGBoost prediction model. On this basis, the rank of the EMI situation of the navigation receiver was given, and the situation assessment method of the navigation receiver under single-source or dual-source were proposed. Compared with the prediction methods of Gaussian processes for regression and support vector regression, the results show that the XGBoost method has the better prediction accuracy. According to this prediction method, the comprehensive utilization of the technology schemes and the tactical schemes is beneficial to improving the adaptability of unmanned aerial vehicles in complex electromagnetic environments.

    参考文献
    相似文献
    引证文献
引用本文

张庆龙,王玉明,程二威,等.无人机卫星导航系统的电磁干扰态势评估方法[J].国防科技大学学报,2022,44(6):109-116.
ZHANG Qinglong, WANG Yuming, CHENG Erwei, et al. Evaluation method of electromagnetic interference situation for satellite navigation system of unmanned aerial vehicle[J]. Journal of National University of Defense Technology,2022,44(6):109-116.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-01
  • 出版日期: 2022-12-28
文章二维码