多核数字信号处理器矩阵乘卷积算法性能评测
作者:
作者单位:

(1. 国防科技大学 计算机学院, 湖南 长沙 410073;2. 国防科技大学 并行与分布处理国防科技重点实验室, 湖南 长沙 410073)

作者简介:

王庆林(1987—),男,贵州思南人,副研究员,博士,硕士生导师,E-mail:wangqinglin_thu@163.com; 裴向东(通信作者),男,山西长治人,博士研究生,E-mail:18903588277@163.com

通讯作者:

中图分类号:

TN95

基金项目:

国家自然科学基金资助项目(62002365)


Evaluating matrix multiplication-based convolution algorithm on multi-core digital signal processors
Author:
Affiliation:

(1. College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China;2. Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    矩阵乘卷积算法能够为各种卷积配置提供高性能基础实现,是面向给定芯片进行卷积性能优化的首要选择。针对国防科技大学自主研制的飞腾异构多核数字信号处理器(digital signal processor, DSP)芯片的特征以及矩阵乘卷积算法自身的特点,提出了一种面向多核DSP架构的高性能并行矩阵乘卷积实现算法ftmEConv。该算法由输入特征图转换、卷积核转换、矩阵乘以及输出特征图转换这四个均运行在通用多核DSP上的并行化部分构成,通过有效挖掘通用DSP核中功能单元的潜力来提升各个部分的性能。实验结果表明,ftmEConv实现了高达42.90%的计算效率,与芯片上的其他矩阵乘卷积算法实现相比,获得了高达7.79倍的性能加速。

    Abstract:

    The matrix multiplication-based convolutional algorithm, which can efficiently implement convolutions with different parameters, is the first choice of convolution performance optimization for a given chip. Based on the architecture of Phytium heterogeneous multi-core DSPs(digital signal processors) developed by National University of Defense Technology and the characteristic of the matrix multiplication-based convolutional algorithm, a parallel implementation of the matrix multiplication-based convolutional algorithm (called ftmEConv) for different convolutions on multi-core DSPs was proposed. The ftmEConv consists of four parallelized parts(input feature maps transformation, filter transformation, matrix multiplication, and output feature maps transformation), all of which were optimized for multi-core DSPs, and the performance of each part was improved by effectively exploiting the potential of all functional units in DSP cores. The experimental results demonstrate that ftmEConv achieves computational efficiency of up to 42.90%. Compared with other implementations of the matrix multiplication-based convolutional algorithm on heterogeneous chips, ftmEConv gets a speedup of up to 7.79 times.

    参考文献
    相似文献
    引证文献
引用本文

王庆林,裴向东,廖林玉,等.多核数字信号处理器矩阵乘卷积算法性能评测[J].国防科技大学学报,2023,45(1):86-94.
WANG Qinglin, PEI Xiangdong, LIAO Linyu, et al. Evaluating matrix multiplication-based convolution algorithm on multi-core digital signal processors[J]. Journal of National University of Defense Technology,2023,45(1):86-94.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-01-16
  • 出版日期: 2023-02-28
文章二维码