长短周期记忆网络微调的氧气浓缩器寿命预测模型迁移
作者:
作者单位:

(空军工程大学 航空工程学院, 陕西 西安 710038)

作者简介:

崔展博(1987—),男,陕西西安人,博士研究生,E-mail:1091313541@qq.com; 焦晓璇(通信作者),男,山西运城人,副教授,博士,E-mail:564325155@qq.com

通讯作者:

中图分类号:

TP391.4

基金项目:

河北省“三三三人才工程”资助项目(B20221011);陕西省自然科学基础研究计划资助项目(2017JQ6034)


Transfer of oxygen concentrator life prediction model based on LSTM-fine-tune
Author:
Affiliation:

(Aviation Engineering School, Air Force Engineering University, Xi′an 710038, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对寿命预测模型迁移问题,提出了一种长短周期记忆网络微调(long short-term memory fine tune, LSTM-fine-tune)的迁移模型,利用理想条件下的试验数据对模型进行训练。在迁移过程中,对部分LSTM网络层进行冻结,利用实际服役环境下的数据对网络其他部分进行修正。为验证模型的泛化能力,采用不同相位与幅值的正弦函数生成数据,通过学习数据获取正弦函数的经验知识,并应用至其他正弦函数的回归,结果表明LSTM-fine-tune模型能够快速拟合,平均均方误差仅为1.033 5,明显低于直接预测误差1.536 8。为通过实际监测数据检验本方法泛化能力,分别获取了试验条件下与实际服役环境下氧气浓缩器的数据,对模型的泛化能力进行验证。结果表明,迁移后训练集预测精度提高了43.0%,测试集预测精度提高了20.2%。

    Abstract:

    To transfer the life prediction model, an LSTM-fine-tune(long short-term memory fine tune) model was proposed. The model was trained by using experimental data under ideal conditions. During the transfer process, part of the LSTM network layer was frozen, and other parts of the network were modified by using data in actual service environment. In order to verify the generalization ability of the model, sinusoidal functions with different phases and amplitudes to generate data were used, obtained the knowledge of the sinusoidal function, and applied it to the regression of other sinusoidal functions. The results show that the LSTM-fine-tune model can be fitted quickly, and the average mean square error is only 1.033 5. It is significantly lower than the direct prediction error 1.536 8. In order to test the generalization ability of this method through actual monitoring data, the data of oxygen concentrators under test conditions and actual service environment respectively is obtained, verifies the generalization ability of the model. The results show that the prediction accuracy of the training set is improved by 43.0% and that of the test set is improved by 20.2%.

    参考文献
    相似文献
    引证文献
引用本文

崔展博,景博,焦晓璇,等.长短周期记忆网络微调的氧气浓缩器寿命预测模型迁移[J].国防科技大学学报,2023,45(4):243-252.
CUI Zhanbo, JING Bo, JIAO Xiaoxuan, et al. Transfer of oxygen concentrator life prediction model based on LSTM-fine-tune[J]. Journal of National University of Defense Technology,2023,45(4):243-252.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-20
  • 出版日期: 2023-08-28
文章二维码