矩阵变换特征与码序列联合学习的卷积码识别方法
作者:
作者单位:

(1. 国防科技大学 电子科学学院, 湖南 长沙 410073;2. 海军工程大学 电子工程学院, 湖北 武汉 430033;3. 中国人民解放军92001部队, 山东 青岛 266005;4. 国防科技大学 电子对抗学院, 安徽 合肥 230037)

作者简介:

王垚(1991—),男,河北井陉人,博士研究生,E-mail:wangyao09a@163.com; 满欣(通信作者),男,湖南怀化人,副教授,博士,E-mail:manxin09@163.com

通讯作者:

中图分类号:

TN911.7

基金项目:

国防科技大学青年创新资助项目(18/19-QNCXJ)


Convolutional codes recognition method based on joint learning of matrix transformation features and code sequences
Author:
Affiliation:

(1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China;2. College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China;3. The PLA Unit 92001,Qingdao 266005, China;4. College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有基于深度学习的卷积码识别方法仍存在参数规模较大、识别性能较弱等不足。针对该问题,提出了一种基于矩阵变换特征与码序列联合学习的卷积码识别方法。将接收到的码字序列排列成矩阵形式,利用软信息剔除可靠性较低的码字,通过一种新的矩阵变换算法得到特征矩阵。在识别时,将原始码字矩阵和特征矩阵输入到具有多模态数据联合学习能力的网络模型,在神经网络中完成特征的提取融合与卷积码的识别。仿真结果表明,所提方法性能明显优于现有基于深度学习的识别方法,特别是对于高码率卷积码;当码率较低时,同样优于传统识别方法。当信噪比达到5 dB时,25种不同参数卷积码的识别率均可达到100%。

    Abstract:

    Existing deep learning based convolutional code recognition methods still have shortcomings such as large parameter sizes and weak recognition performance. Aiming at this problem, a convolutional code recognition method based on joint learning of matrix transform features and code sequences was proposed. The received codeword sequence was arranged into a matrix form, and the soft information was used to eliminate the codewords with low reliability. Then, a new matrix transformation algorithm was used to obtain the feature matrix. During the recognition process, the original matrix of code words and the matrix of features were fed into a network model with a joint learning capability for multimodal data. The feature extraction fusion and convolution code recognition were completed in the neural network. Simulation results show that the recognition performance of the proposed method is significantly better than the existing recognition methods based on deep learning, especially for high bit rate convolutional codes. When the rate is low, the proposed method is also better than traditional methods. When the signal-to-noise ratio reaches 5 dB, the recognition rate of 25 convolutional codes with different parameters can reach 100%.

    参考文献
    相似文献
    引证文献
引用本文

王垚,满欣,尤红雨,等.矩阵变换特征与码序列联合学习的卷积码识别方法[J].国防科技大学学报,2023,45(5):38-47.
WANG Yao, MAN Xin, YOU Hongyu, et al. Convolutional codes recognition method based on joint learning of matrix transformation features and code sequences[J]. Journal of National University of Defense Technology,2023,45(5):38-47.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-26
  • 出版日期: 2023-10-28
文章二维码