面向辐射源识别的多尺度特征提取与特征选择网络
作者:
作者单位:

(1. 电子科技大学 电子科学技术研究院, 四川 成都 611731;2. 电子科技大学 信息与通信工程院, 四川 成都 611731)

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:


Multi-scale feature extraction and feature selection network for radiation source identification
Author:
Affiliation:

(1. Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; 2. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前应用于辐射源识别的卷积神经网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理有两种方式:一种方式是将其变换为图像,另一种方式是提取IQ时序数据的浅层特征。前一种方式会导致算法计算量大,而后一种方式会导致识别准确率低。针对上述问题,提出一种多尺度特征提取与特征选择网络。该网络以IQ信号为输入,经多尺度特征提取网络提取IQ信号的浅层特征和多尺度特征,采用特征选择网络降低多尺度特征的数据维度,通过自适应线性整流单元实现特征增强,使用单个全连接层对辐射源进行分类。在FIT/CorteXlab射频指纹识别数据集上,与ORACLE、CNN-DLRF和IQCNet对比实验表明,所提网络在一定程度上提高了识别准确率,降低了计算量。

    Abstract:

    Convolutional neural networks currently applied to radiation source identification process the time-series IQ( in-phase and quadrature-phase) signals in two ways:one way transforms them into images, and the other way extracts shallow features of the IQ time-series data. The former way leads to a large computational effort of the algorithm, while the latter way leads to a low accuracy of the recognition rate. To address the above problems, a multi-scale feature extraction and feature selection network was proposed. After inputting the IQ signal, the shallow and multi-scale features of the IQ signal were extracted by the multi-scale feature extraction network. Then the data dimension of multi-scale features was reduced by the feature selection network. Feature enhancement was achieved by the adaptive linear rectification unit, and a single fully connected layer was used to classify the radiation source. Comparison experiments with ORACLE, CNN-DLRF and IQCNet on the FIT/CorteXlab radio frequency fingerprint recognition dataset show that the proposed network improves the recognition accuracy and reduces the computational effort to some extent.

    参考文献
    相似文献
    引证文献
引用本文

张顺生,丁宦城,王文钦.面向辐射源识别的多尺度特征提取与特征选择网络[J].国防科技大学学报,2024,46(6):141-148.
ZHANG Shunsheng, DING Huancheng, WANG Wenqin. Multi-scale feature extraction and feature selection network for radiation source identification[J]. Journal of National University of Defense Technology,2024,46(6):141-148.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-02
  • 出版日期: 2024-12-28
文章二维码