极化敏感阵列方位依赖误差校正算法
作者:
作者单位:

(1. 哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001;2. 海军大连舰艇学院 信息系统系, 辽宁 大连 116018)

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:

航空科学基金资助项目(201901012005)


Orientation-dependent error calibration algorithm for polarization sensitive array
Author:
Affiliation:

(1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;2. Department of Information System, Dalian Naval Academy, Dalian 116018, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在实际应用中多种类型阵列误差同时存在,针对这种情况下阵列误差方位依赖的特点,提出了一种基于流形分离技术(manifold separation technique, MST)的改进多重信号分类(multiple signal classification, MUSIC)算法,可以有效解决多种阵列误差影响下的波达方向估计问题。利用MST获得包含阵列非理想特性的采样矩阵,从而进行精准测向;通过二维傅里叶变换求解二维空间谱,与现有MUSIC校正算法相比,减少了谱峰搜索的运算量。理论分析和仿真验证了该算法的有效性,可为实际问题的解决提供参考。

    Abstract:

    In practical applications, multiple types of array errors exist simultaneously. In view of the orientation dependence of array errors in this case, an improved MUSIC(multiple signal classification) algorithm based on MST(manifold separation technique) was proposed, which can effectively solve DOA(direction of arrival) estimation problem under the influence of multiple array errors. The sampling matrix, which contains all the non-ideal characteristics of the array was obtained by using MST, so as to achieve accurate direction finding. By using two-dimensional Fourier transform, the 2D spatial spectrum was solved. Compared with existing MUSIC algorithm, the computation amount of spectrum peak searching was reduced. Theoretical analysis and simulation verify the effectiveness of the algorithm, which can provide reference for the solution of practical problems.

    参考文献
    相似文献
    引证文献
引用本文

刘鲁涛,赵梓君,李利.极化敏感阵列方位依赖误差校正算法[J].国防科技大学学报,2024,46(6):174-183.
LIU Lutao, ZHAO Zijun, LI Li. Orientation-dependent error calibration algorithm for polarization sensitive array[J]. Journal of National University of Defense Technology,2024,46(6):174-183.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-02
  • 出版日期: 2024-12-28
文章二维码