Flutter analysis of hypersonic airfoil skin by differential quadrature method
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Flutter analysis plays a vital role in the design of hypersonic airfoil skin. This research introduces the differential quadrature method into the aeroelastic problem of hypersonic skin. The aeroelastic model was presented based on the elasticity theory, and the hypersonic piston theory was used for the modeling of supersonic aerodynamic loads. The validity of the differential quadrature method was confirmed by comparing the FEM solutions for the natural frequencies and the flutter velocity of the airfoil skin, and the relative error is 0.58%. A detailed parametric study was carried out to study the influences of the thickness, area and aspect ratio on the hypersonic flutter behavior of airfoil skins. The result shows that, the flutter velocity increases with the aspect ratio and thickness increased, and decreases with the area increased. 

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 15,2011
  • Revised:
  • Adopted:
  • Online: August 28,2012
  • Published:
Article QR Code