Abstract:In order to analyze the feasibility of MHD (magnetohydrodynamic) heat shield system for the nose cone of hypersonic vehicles, a normal columned solenoid-based MHD thermal protection system model was built. By using the low magneto-Reynolds MHD model, a set of numerical simulations for hypersonic nose cone with external magnetic field were performed; the feasible range of magnetic induction intensity of normal solenoid-based MHD heat shield system was obtained; the requirements of the solenoid's geometric parameters were drawn to meet the limit of coil current density. Results show that, considering the saturation effect and the current density limit existing in the process of MHD thermal protection, the system works better when the stagnation magnetic induction intensity B0 is in the range of 0.05~0.20 T. When B0 is equal to 0.20 T, the stagnation heat flux density and total wall heat flux is reduced by 31.3% and 56.6% respectively, indicating the effectiveness of thermal protection. However, the required coil mass is so heavy that its structure must be optimized to be actually utilized.