Incremental clustering algorithm of neural network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Neural network model is powerful in problem modelling. But the traditional back propagating algorithm can only execute batch supervised learning, and its time expense is very high. According to these problems, a novel incremental neural network model and the corresponding clustering algorithm were put forward. This model was supported by biological evidences, and it was built on the foundation of novel neuron’s activation function and the synapse adjusting function. Based on this, an adaptive incremental clustering algorithm was put forward, in which mechanisms such as “winner-take-all” were introduced. As a result, “catastrophic forgetting” problem was successfully solved in the incremental clustering process. Experiment results on classic datasets show that this algorithm’s performance is comparable with traditional clustering models such as K-means. Especially, its time and space expenses on incremental tasks are much lower than traditional clustering models.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 28,2015
  • Revised:
  • Adopted:
  • Online: November 08,2016
  • Published:
Article QR Code