Fluid-thermal-structural study of integrated algorithm for aerodynamically hypersonic heated leading edges
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A fluid-thermal-structural integrated method was presented based on finite volume method for hypersonic aeroheating-structural-thermal interaction. A system of unified integral equations was developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field was discretized by using an up-wind finite volume method, which avoids the fussy data exchange and computational complexity in coupling method. To demonstrate its capability, applications for fluid-thermal-structural analysis of hypersonic ow over 2D stainless steel cylinder in steady and unsteady states, were performed and discussed. The numerical results show that the maximum temperature of about 648 K occurs at the stagnation point of stainless steel cylinder in a steady state and the objective physical processes in a good agreement with measured values in unsteady state. Compared with the coupling method, the integrated algorithm has shown a better stability with lesser griddependence,which provides theoretical and technical support for the thermal protection system of hypersonic vehicles.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 18,2017
  • Revised:
  • Adopted:
  • Online: January 17,2019
  • Published: December 28,2018
Article QR Code