Study of data based fault diagnosis algorithm update problem
CSTR:
Author:
Affiliation:

(Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha 410073, China)

Clc Number:

TH17;TP30

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    BITE (built-in test equipment) is widely used in many fields such as fault diagnosis, equipment prognosis and health management. The problems encountered in the process of BITE design and update, including the classifiers update, samples imbalance and hardware limitation, were analyzed, and the initial solutions were proposed. The density-based cluster and artificial immune system were applied to process the raw data; the delegates-based hybrid learning methods were proposed. The evaluation of the solution was validated by the numerical and experiment examples with support vector machine. Results show that the proposed solution can solve the mentioned problems well and is helpful for data based fault diagnosis design and update in the process of BITE maturation.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 11,2018
  • Revised:
  • Adopted:
  • Online: April 29,2020
  • Published: April 28,2020
Article QR Code