Cohesive element method for "dewetting" damage research of propellant
CSTR:
Author:
Affiliation:

(1. College of Defense Engineering, Army Engineering University, Nanjing 210007, China;2. System Design Institute of Hubei Aerospace Technology Academy, Wuhan 430040, China)

Clc Number:

V435

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Cohesive element is an important means to investigate the "dewetting" damage of propellant. The high filling ratio geometric model of propellant was constructed by the molecular dynamics method, and the mesoscopic finite element analysis model of propellant was constructed by combining the periodic geometry and periodic boundary treatment methods. The "dewetting" behavior of the interface between the particle and the matrix was simulated by using the cohesion element and PPR cohesive zone model. The mechanical response of propellant mesoscopic structure was analyzed under the uniaxial tensile and pure shear tests, and the damage mechanism of "dewetting" of propellant was studied. According to different volume fraction ratio, strain rate and cohesive strength, the influence law of "dewetting" damage was analyzed. The research methods and conclusions can provide a useful reference for the formulation of a new generation of high-performance propellant.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 26,2021
  • Revised:
  • Adopted:
  • Online: June 02,2022
  • Published: June 28,2020
Article QR Code